Disinfecting Slush Machines by an Innovative Near Ultraviolet Light Emitting Diode (UV LED) Technological System

Disinfecting Slush Machines by an Innovative Near Ultraviolet Light Emitting Diode (UV LED) Technological System

Authors

  • C. Salini
  • D. Amodeo
  • G. Cevenini
  • N. Nante
  • I. De Palma
  • G. Messina

Keywords:

nUV system, UV technology, Food control, Food contamination, Foodborne disease

Abstract

Background. Microbial contamination of food and beverages is a topic of great interest. The most innovative technologies take advantage from UV light. This study aimed to evaluate a possible configuration of a nUV LED device at a wavelength of 405 nm installed on slush machines in order to reduce the microbial contamination.

Study Design and Methods. The study was conducted in the Department of Molecular and Developmental Medicine, University of Siena, Italy. A nUV LED device with 408 nm wavelength was installed and used on the slush machines. The inner walls of the machine tanks were fouled with contaminated slush, to evaluate the effectiveness of nUV radiation in reducing microbial contamination over time.

Results. Experiment results on the slush machine showed a statistically significant logarithmic microbial reduction, in relation with the distance from the nUV LED light source. It has also been shown that the reduction of microbes is possible with a proper management of some parameters: the exposure time, the power and wavelength of the light source, the distance and the obstacles between the light source and the target to be irradiated.

Conclusion. To reduce the incidence of foodborne diseases it is necessary to take all necessary precautionary measures, and the use of nUV technology has proved to be a crucial element in achieving this goal.

References

1. Kadariya J, Smith TC, Thapaliya D. Staphylococcus aureus and staphylococcal food-borne disease: an ongoing challenge in public health. Biomed Res Int. 2014; 2014: 827965. doi: 10.1155/2014/827965. Epub 2014 Apr 1.

2. Murray RJ. Recognition and management of Staphylococcus aureus toxin-mediated disease. Intern Med J. 2005 Dec; 35 Suppl 2: S106-19.

doi: 10.1111/j.1444-0903.2005.00984.x.

3. Cardaci R, Burgassi S, Golinelli D, et al. Automatic Vending-Machines Contamination: A Pilot Study. Glob J Health Sci. 2017; 9(2): 63-7. doi:

10.5539/gjhs.v9n2p63. Epub 2016 Jun 30.

4. Fetsch A, Contzen M, Hartelt K, et al. Staphylococcus aureus food-poisoning outbreak associated with the consumption of ice-cream. Int J Food Microbiol. 2014 Sep 18; 187: 1-6. doi: 10.1016/j.ijfoodmicro.2014.06.017. Epub 2014 Jun 28

5. Rietberg K, Lloyd J, Melius B, et al. Outbreak of Listeria monocytogenes infections linked to a pasteurized ice cream product served to hospitalized patients. Epidemiol Infect. 2016 Oct; 144(13): 2728-31. doi: 10.1017/ S0950268815003039. Epub 2015 Dec 18.

6. Marcotrigiano V, Magarelli P, Sorrenti GT, et al. Official controls regarding artisanal ice cream shops: public health policies and consumer protection in the Italian and European legislative frameworks. Ann Ig. 2019 Jan-Feb; 31(1): 76-85. doi: 10.7416/ai.2019.2261.

7. Shehatou C, Logunov SL, Dunman PM, Haidaris CG, Klubben WS. Characterizing the Antimicrobial Properties of 405 nm Light and the Corning® Light-Diffusing Fiber Delivery System. Lasers Surg Med. 2019 Dec; 51(10): 887-96. doi: 10.1002/lsm.23132. Epub 2019 Jul 14.

8. Maclean M, MacGregor SJ, Anderson JG, Woolsey G. Inactivation of bacterial pathogens following exposure to light from a 405-nanometer light-emitting diode array. Appl Environ Microbiol. 2009 Apr; 75(7): 1932-7. doi: 10.1128/ AEM.01892-08. Epub 2009 Feb 6.

9. Kim MJ, Bao Xian AN, Zwe YH, Yuk HG. Photodynamic inactivation of Salmonella enterica Enteritidis by 405 ± 5-nm light-emitting diode and its application to control salmonellosis on cooked chicken. Food Control. 2017 Dec; 82: 305-15. 10.1016/j.foodcont.2017.06.040.

10. Luksiene Z, Zukauskas A. Prospects of photosensitization in control of pathogenic and harmful micro-organisms. J Appl Microbiol. 2009 Nov; 107(5):1415-24. doi: 10.1111/j.13652672.2009.04341.x. Epub 2009 May 16.

11. Ricciardi EF, Pedros-Garrido S, Papoutsis K, Lyng JG, Conte A, Del Nobile MA. Novel Technologies for Preserving Ricotta Cheese:

Effects of Ultraviolet and Near-UltravioletVisible Light. Foods. 2020 May 5; 9(5): 580. doi: 10.3390/foods9050580.

12. Guo S, Huang R, Chen H. Evaluating a Combined Method of UV and Washing for Sanitizing Blueberries, Tomatoes, Strawberries, Baby Spinach, and Lettuce. J Food Prot. 2019 Nov; 82(11): 1879-89. doi: 10.4315/0362-028X.JFP18-524.

13. Rastogi NK. Opportunities and challenges in application of ultrasound in food processing. Crit

Rev Food Sci Nutr. 2011 Sep; 51(8): 705-22. doi: 10.1080/10408391003770583.

14. Corrêa TQ, Blanco KC, Garcia ÉB, et al. Effects of ultraviolet light and curcumin-mediated photodynamic inactivation on microbiological food safety: A study in meat and fruit. Photodiagnosis Photodyn Ther. 2020 Jun; 30: 101678. doi: 10.1016/j.pdpdt.2020.101678. Epub 2020 Jan 28.

15. Messina G, Della Camera A, Ferraro P, et al. An Emerging Innovative UV Disinfection Technology (Part II): Virucide Activity on SARS-CoV-2. Int J Environ Res Public Health. 2021 Apr 7; 18(8): 3873. doi: 10.3390/ijerph18083873.

16. Code of Federal Regulations (CFR). Ultraviolet radiation for the processing and treatment of food. Silver Spring, U.S. Food and Drug Administration; 2018.

17. Li X, Cai M, Wang L, Niu F, Yang D, Zhang G. Evaluation survey of microbial disinfection methods in UV-LED water treatment systems. Sci Total Environ. 2019 Apr 1; 659: 1415-27. doi: 10.1016/j.scitotenv.2018.12.344. Epub 2018 Dec 24.

18. Geveke DJ. UV inactivation of bacteria in apple cider. J Food Prot. 2005 Aug; 68(8): 1739-42. doi: 10.4315/0362-028x-68.8.1739.

19. Jeong YJ, Ha JW. Simultaneous Effects of UV-A and UV-B Irradiation on the Survival of Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes in Buffer Solution and Apple Juice. J Food Prot. 2019 Dec; 82(12): 2065-70. doi: 10.4315/0362-028X.JFP-19131.

20. Dai T, Fuchs BB, Coleman JJ, et al. Concepts and principles of photodynamic therapy as an alternative antifungal discovery platform. Front Microbiol. 2012 Apr 10; 3: 120. doi: 10.3389/ fmicb.2012.00120.

21. Hamblin MR. Antimicrobial photodynamic inactivation: a bright new technique to kill resistant microbes. Curr Opin Microbiol. 2016 Oct; 33: 67-73. doi: 10.1016/j.mib.2016.06.008. Epub 2016 Jul 13.

22. Bintsis T, Litopoulou-Tzanetaki E, Robinson RK. Existing and potential applications of ultraviolet light in the food industry - a critical review. J Sci Food Agric. 2000 May 1; 80(6): 637-45. doi: 10.1002/ (SICI)1097-0010(20000501)80:6<637::AIDJSFA603>3.0.CO;2-1.

23. Hoenes K, Bauer R, Spellerberg B, Hessling M. Microbial Photoinactivation by Visible Light Results in Limited Loss of Membrane Integrity. Antibiotics (Basel). 2021 Mar 23; 10(3): 341. doi: 10.3390/antibiotics10030341.

24. Ganz RA, Viveiros J, Ahmad A, et al. Helicobacter pylori in patients can be killed by visible light. Lasers Surg Med. 2005 Apr; 36(4): 260-5. doi: 10.1002/lsm.20161

25. Hoenes K, Wenzel U, Hessling M. Realisation and assessment of a low-cost LED device for contact lens disinfection by visible violet light. Biomed Tech (Berl). 2020 Aug 27; 65(4): 48590. doi: 10.1515/bmt-2019-0231.

26. Kim MJ, Bang WS, Yuk HG. 405 ± 5 nm light emitting diode illumination causes photodynamic inactivation of Salmonella spp. on fresh-cut papaya without deterioration. Food Microbiol. 2017 Apr; 62: 124-32. doi: 10.1016/j. fm.2016.10.002. Epub 2016 Oct 3.

27. Luksiene Z, Brovko L. Antibacterial Photosensitization-Based Treatment for Food Safety. Food Engineering Reviews. 2013; 5(4): 185-99. doi:10.1007/s12393-013-9070-7.

28. Tortik N, Spaeth A, Plaetzer K. Photodynamic decontamination of foodstuff from Staphylococcus aureus based on novel formulations of curcumin. Photochem Photobiol Sci. 2014 Oct; 13(10): 1402-9. doi: 10.1039/c4pp00123k.

29. Kim MJ, Tang CH, Bang WS, Yuk HG. Antibacterial effect of 405±5nm light emitting diode illumination against Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella on the surface of fresh-cut mango and its influence on fruit quality. Int J Food Microbiol. 2017 Mar 6; 244: 82-9. doi: 10.1016/j.

ijfoodmicro.2016.12.023. Epub 2016 Dec 30.

30. Koutchma T. Advances in Ultraviolet Light Technology for Non-thermal Processing of Liquid Foods. Food Bioprocess Technol. 2009; 2(2): 138-55. doi: 10.1007/s11947-008-0178-3.

31. Towery P, Guffey JS, Motts S, et al. Sensory Evaluation of Cucumbers Treated with Blue Light.

J Allied Health. 2018 Spring; 47(1): e17-e21.

Downloads

Published

2025-08-04

Issue

Section

Original research

How to Cite

1.
Salini C, Amodeo D, Cevenini G, Nante N, De Palma I, Messina G. Disinfecting Slush Machines by an Innovative Near Ultraviolet Light Emitting Diode (UV LED) Technological System. Ann Ig [Internet]. 2025 Aug. 4 [cited 2025 Oct. 8];35(4):403-12. Available from: https://mail.mattioli1885journals.com/index.php/annali-igiene/article/view/17632