Effect of Microgreens Blanching Process Time on Total Dietary Fiber, Antioxidant Activity, and Organoleptic

Effect of Microgreens Blanching Process Time on Total Dietary Fiber, Antioxidant Activity, and Organoleptic

Authors

  • Donna Azhar Nafisah Department of Nutrition Science, Faculty of Medicine, Universitas Diponegoro, Jl. Prof. Sudarto, Tembalang, Semarang 50275, Central Java, Indonesia
  • Nina Resti Doctoral Study Program of Medical and Health Sciences, Universitas Diponegoro, Semarang, Central Java, Indonesia
  • Dewi Marfu’ah Kurniawati Department of Nutrition Science, Faculty of Medicine, Universitas Diponegoro, Jl. Prof. Sudarto, Tembalang, Semarang, Central Java, Indonesia
  • Mohammad Arfan Department of Electrical Engineering, Faculty of Engineering, Diponegoro University, Indonesia
  • Wahyu Widodo Faculty of Economics and Business, Universitas Diponegoro, Semarang, Indonesia
  • Diana Nur Afifah 1. Department of Nutrition Science, Faculty of Medicine, Universitas Diponegoro, Jl. Prof. Sudarto, Tembalang, Semarang, Central Java, Indonesia. 2. SDGs Center, Universitas Diponegoro, Central Java, Indonesia. 3. Laboratory of Sustainable Diets and Biodiversity, Center of Research and Services – Diponegoro University (CORES-DU), Integrated Laboratory, Universitas Diponegoro, Semarang, Central Java, Indonesia https://orcid.org/0000-0001-8808-1826

Keywords:

microgreens, antioxidant activity, total dietary fiber, organoleptic

Abstract

Background and aim: Excessive lipid accumulation is a prevalent condition that causes oxidative stress and bacterial imbalance in the intestine, leading to obesity. To reduce the prevalence, several studies have proposed the use of microgreens, such as red spinach, radish, and mustard greens, due to their high dietary fiber content. Therefore, this study aims to determine antioxidant activity, total dietary fiber, and organoleptic properties of different varieties of microgreens with and without blanching process. Methods: The study procedures were carried out using Completely Randomized Design (CRD) by applying blanching treatment on red spinach, red radish, and mustard greens microgreens with variations in time of 10, 15, and 30 seconds. IC50 antioxidant test was performed using DPHH (2,2-dhipenyl1-picryhydrazyl) method, while total dietary fiber was assessed with the enzymatic gravimetric method. Organoleptic tests were carried out using hedonic and Just About Right (JAR) assessments on 67 panelists. Subsequently, the data obtained were analyzed using the Kruskal-Wallis statistical test. Results: The results showed that the 30-second blanched mustard greens (8401.05 ppm), fresh radish (11793 ppm), and 15-second blanched red spinach (15382 ppm) had the highest IC50 antioxidant activity. Meanwhile, the 30-second blanched red spinach (7.9 g/100 g), fresh red radish (7.09 g/100 g), and 10-second blanched mustard greens (6.69 g/100 g) had the highest total dietary fiber. The results also showed that the optimal treatments were observed in 15-second blanched red spinach, fresh red radish, and 30-second blanched mustard greens. Conclusions: Blanching process affected antioxidant activity, total dietary fiber, texture, taste, and color of red spinach microgreens. The treatment was also known to influence total dietary fiber, texture, taste, color, and aftertaste of red radish microgreens. Meanwhile, in mustard greens, blanching process only affected antioxidant activity, texture, and taste.

References

1. Blüher M. Obesity: global epidemiology and pathogenesis. Nature Reviews Endocrinology. 2019;15(5):288–98. doi: 10.1038/s41574-019-0176-8.

2. Midah Z, Fajriansyah F, Makmun A, et al. The relationship between obesity and oxidative stress. UMI Medical Journal. 2021;6(1):62–9. doi: https://doi.org/10.33096/umj.v6i1.140.

3. Ministry of Health of the Republic of Indonesia. Indonesian health survey 2023 in figures. Jakarta: Health Development Policy Agency; 2023.

4. Lara-Guzmán ÓJ, Rivera DA, Corrales-Agudelo V, et al. Dietary antioxidant intake is inversely associated with 2,3-dinor oxylipin metabolites, the major excreted oxylipins in overweight and obese subjects. Free Radical Biology Medicine. 2022;190:42–54. doi: 10.1016/j.freeradbiomed.2022.07.023.

5. Zheng B, Ao T, Zhao X, et al. Comprehensive assessment of the anti-obesity effects of highland barley total, insoluble, and soluble dietary fiber through multi-omics analysis. Food Research International. 2024;189:114535. doi: 10.1016/j.foodres.2024.114535.

6. Bhaswant M, Shanmugam DK, Miyazawa T, et al. Microgreens—a comprehensive review of bioactive molecules and health benefits. Molecules. 2023;28(2):867. doi: https://doi.org/10.3390/molecules28020867.

7. Marchioni I, Martinelli M, Ascrizzi R, et al. Small functional foods: comparative phytochemical and nutritional analyses of five microgreens of the Brassicaceae family. Foods. 2021;10(2):427. doi: 10.3390/foods10020427.

8. Xiao Z, Lester GE, Park E, et al. Evaluation and correlation of sensory attributes and chemical compositions of emerging fresh produce: microgreens. Postharvest Biology and Technology. 2015;110:140–8. doi: 10.1016/j.postharvbio.2015.07.021.

9. Mir SA, Shah MA, Mir MM. Microgreens: production, shelf life, and bioactive components. Critical Reviews in Food Science and Nutrition. 2017;57(12):2730–6. doi: 10.1080/10408398.2016.1144557.

10. Partap M, Sharma D, Hn D, et al. Microgreen: a tiny plant with superfood potential. Journal of Functional Foods. 2023;107:105697. doi: https://doi.org/10.1016/j.jff.2023.105697.

11. Belošević SD, Milinčić DD, Gašić UM, et al. Broccoli, amaranth, and red beet microgreen juices: the influence of cold-pressing on the phytochemical composition and the antioxidant and sensory properties. Foods. 2024;13(5):757. doi: https://doi.org/10.3390/foods13050757.

12. Pant Y, Lingwan M, Masakapalli SK. Metabolic, biochemical, mineral and fatty acid profiles of edible Brassicaceae microgreens establish them as promising functional food. Food Chemistry Advances. 2023;3:100461. doi: https://doi.org/10.1016/j.focha.2023.100461.

13. Supapvanich S, Sangsuk P, Sripumimas S, et al. Efficiency of low dose cyanocobalamin immersion on bioactive compounds contents of ready to eat sprouts (sunflower and daikon) and microgreens (red-amaranth) during storage. Postharvest Biology and Technology. 2020;160:111033. doi: 10.1016/j.postharvbio.2019.111033.

14. Kumar A, Gupta K, Islam Apu MdA, et al. Effect of household processing on nutritional and antinutritional composition, mineral-mineral ratios, and functional properties of Colocasia leaves. Heliyon. 2023;9(6):e17137. doi: 10.1016/j.heliyon.2023.e17137.

15. Wu DT, Li J, Wang J, et al. Comparison of soluble dietary fibers from various quinoa microgreens: structural characteristics and bioactive properties. Food Research International. 2024;181:114108. Doi: 10.1016/j.foodres.2024.114108.

16. Ghoora MD, Babu DR, Srividya N. Nutrient composition, oxalate content and nutritional ranking of ten culinary microgreens. Journal of Food Composition and Analysis. 2020;91:103495. doi: 10.1016/j.jfca.2020.103495.

17. Zhu F. Dietary fiber polysaccharides of amaranth, buckwheat and quinoa grains: a review of chemical structure, biological functions and food uses. Carbohydrate Polymer. 2020;248:116819. doi: 10.1016/j.carbpol.2020.116819.

18. Syafrida M, Darmanti S, Izzati M. The effect of drying temperature on water content, flavonoid content and antioxidant activity of leaves and tubers of nutsedge (Cyperus rotundus L.). Bioma Berkala Ilmiah Biologi. 2018;20(1):44. doi: : https://doi.org/10.14710/bioma.20.1.44-50.

19. Gulcin İ. Antioxidants and antioxidant methods: an updated overview. Archives of Toxicology. 2020;94(3):651–75. doi: 10.1007/s00204-020-02689-3.

20. Nani A, Murtaza B, Sayed Khan A, et al. Antioxidant and anti-inflammatory potential of polyphenols contained in Mediterranean diet in obesity: molecular mechanisms. Molecules. 2021;26(4):985. doi: 10.3390/molecules26040985.

21. Ghoora MD, Haldipur AC, Srividya N. Comparative evaluation of phytochemical content, antioxidant capacities and overall antioxidant potential of select culinary microgreens. Journal of Agriculture and Food Research. 2020;2:100046. doi: 10.1016/j.jafr.2020.100046.

22. Sehrish A, Majeed I, Zongo E, et al. A review on various extraction and detection methods of bio-functional components from microgreens: food applications and health properties. International Journal of Food Properties. 2023;26(2):3082–105. doi: 10.1080/10942912.2023.2272564.

23. Renna M, Di Gioia F, Leoni B, et al. Culinary assessment of self-produced microgreens as basic ingredients in sweet and savory dishes. Journal of Culinary Science & Technology. 2017;15(2):126–42. doi: 10.1080/15428052.2016.1225534.

24. Lawalata VN, Tetelepta G. Acceptability of Tongka Langit banana juice drink with long blanching treatment. Agritekno Journal of Agricultural Technology. 2019;8(1):24–8. Doi: https://doi.org/10.30598/jagritekno.2019.8.1.24.

25. Oktaviani D, Maflahah I, Supriyanto S. Effect of blanching time on the healthy salt characteristics of sealible (Suaeda maritima) Flour. IOP Conference Series Earth and Environmental Science. 2023;7(3):128–40. doi: 10.1088/1755-1315/1182/1/012047.

26. Wennberg M, Ekvall J, Olsson K, et al. Changes in carbohydrate and glucosinolate composition in white cabbage (Brassica oleracea var. capitata) during blanching and treatment with acetic acid. Food Chem. 2006;95(2):226–36.

27. Yadav LP, Koley TK, Tripathi A, et al. Antioxidant potentiality and mineral content of summer season leafy greens: comparison at mature and microgreen stages using chemometric. Agricultural Research. 2019;8(2):165–75. doi: 10.1007/s40003-018-0378-7.

28. Kamsiati E, Rahayu E, Herawati H. The effect of blanching on the characteristics of instant cassava leaves. Metana. 2020;16(1):39–46. doi: https://doi.org/10.14710/metana.v16i1.30461.

29. Mongeau R, Brassard R. Comparison and assessment of the difference in total dietary fiber in cooked dried legumes as determined by five methods. Journal of AOAC International. 1994;77(5):1197–202.

30. Molyneux P. The use of the stable free radical diphenylpicryl-hydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin Journal of Science and Technology. 2004;26(2).

31. Ayustaningwarno F, Rustanti N, Afifah DN, et al. Theory and application of food technology. Semarang: Faculty of Medicine, Diponegoro University; 2020.

32. Lawless HT, Heymann H. Acceptance testing. In: Sensory evaluation of food. New York: Springer; 2010. p. 325–47. (Food Science Text Series).

33. Sullivan WG, Wicks EM, Koelling CP. Engineering economy. Global edition. 17th ed. 2019. 756 p.

34. Lee R, Kim Y. Effect of blanching on dietary fiber and free sugar content of vegetables. Journal of Food Hygiene and Safety. 2023;38(3):164–9. Doi: https://doi.org/10.13103/JFHS.2023.38.3.164.

35. Agustin AT, Zaini MA, Handito D. The effect of blanching method and temperature on the compounding of banana stem fiber as a raw material for making ares. Pro Food (Journal of Food Science and Technology). 2020;6(1):609–22. doi: https://doi.org/10.29303/profood.v6i1.117.

36. Wu Y, Liu Y, Jia Y, et al. Effects of thermal processing on natural antioxidants in fruits and vegetables. Food Research International. 2024;192:114797. Doi: 10.1016/j.foodres.2024.114797.

37. Narsih, Agato. Efek kombinasi suhu dan waktu ekstraksi terhadap komponen senyawa ekstrak kulit lidah buaya. Journal Galung Tropica. 2018;7(1):75. doi: https://doi.org/10.31850/jgt.v7i1.320

38. Zhan X, Zhu Z, Sun DW. Effects of pretreatments on quality attributes of long-term deep frozen storage of vegetables: a review. Critical Reviews Food Science and Nutrition. 2019;59(5):743–57. doi: 10.1080/10408398.2018.1496900.

39. Le NL, Le TTH, Ma NB. Effects of air temperature and blanching pre-treatment on phytochemical content, antioxidant activity and enzyme inhibition activities of Thai basil leaves (Ocimum basilicum var. thyrsiflorum). Food Research. 2021;5(1):337–42.

40. Apriani S, Pratiwi FD. Antioxidant activity of butterfly pea flower extract (Clitoria ternatea L.) using the DPPH (2,2 diphenyl-1-picrylhydrazyl) method. Cohesion Scientific Journal. 2021;5(3).

41. Amalia R, Fardhani DM, Syarifah SM, et al. Biostimulant effects of Moringa oleifera on growth and antioxidant activity in red amaranth (Amaranthus tricolor L.) microgreens. In: Purwestri YA, Sawitri WD, Nuringtyas TR, et al., editors. BIO Web of Conferences. 2024;127:01005. Doi: 0.1051/bioconf/202412701005.

42. Diantika F. Effect of long extraction and concentration and concentration of ethanol solvent extraction antioxidant cocoa beans (Theobroma cacao L.). Journal of Agricultural Technology. 2014;15(3):159–65.

43. Agustina RK, Dieny FF, Rustanti N, et al. Antioxidant activity and soluble protein content of tempeh gembus hydrolysate. Hiroshima Journal Medical and Science. 2018;67.

44. Ayustaningwarno F, Ayu AM, Afifah DN, et al. Physicochemical and sensory quality of high antioxidant fruit leather of red dragon fruit and watermelon rind enriched with seaweed. Discover Food. 2024;4(92). doi: https://doi.org/10.1007/s44187-024-00169-6.

45. Gunjal M, Singh J, Kaur J, et al. Comparative analysis of morphological, nutritional, and bioactive properties of selected microgreens in alternative growing medium. South African Journal of Botany. 2024;165:188–201. doi: 10.1016/j.sajb.2023.12.038.

46. Zhang C, Hu C, Sun Y, et al. Blanching effects of radio frequency heating on enzyme inactivation, physiochemical properties of green peas (Pisum sativum L.) and the underlying mechanism in relation to cellular microstructure. Food Chemistry. 2021;345:128756. doi: 10.1016/j.foodchem.2020.128756.

47. Maseva S, Utama P, Sodiq AH, et al. Pengaruh lama penyinaran lampu LED (light emitting diode) dan jenis media tanam terhadap pertumbuhan microgreens bayam merah (Amaranthus tricolor L.). Journal of Agros Agriculture. 2024;26(1):102. doi: 10.37159/jpa.v26i1.4204.

48. Cano-Lamadrid M, Martínez-Zamora L, Castillejo N, et al. How does the phytochemical composition of sprouts and microgreens from Brassica vegetables affect the sensory profile and consumer acceptability?. Postharvest Biology and Technology. 2023;203:112411. doi: 10.1016/j.postharvbio.2023.112411.

49. Dereje B, Jacquier JC, Elliott-Kingston C, et al. Brassicaceae microgreens: phytochemical compositions, influences of growing practices, postharvest technology, health, and food applications. ACS Food Science & Technology. 2023;3(6):981–98.

50. Xiao Z, Rausch SR, Luo Y, et al. Microgreens of Brassicaceae: genetic diversity of phytochemical concentrations and antioxidant capacity. LWT. 2019;101:731–7. doi: https://doi.org/10.1016/j.lwt.2018.10.076.

51. Senevirathne GI, Gama-Arachchige NS, Karunaratne AM. Germination, harvesting stage, antioxidant activity and consumer acceptance of ten microgreens. Ceylon Journal of Science. 2019;48(1):91. doi: 10.4038/cjs.v48i1.7593.

52. Michell KA, Isweiri H, Newman SE, et al. Microgreens: consumer sensory perception and acceptance of an emerging functional food crop. Journal of Food Science. 2020;85(4):926–35. doi: 10.1111/1750-3841.15075.

Downloads

Published

25-06-2025

Issue

Section

Original articles

How to Cite

1.
Nafisah DA, Resti N, Kurniawati DM, Arfan M, Widodo W, Afifah DN. Effect of Microgreens Blanching Process Time on Total Dietary Fiber, Antioxidant Activity, and Organoleptic. Progr Nutr [Internet]. 2025 Jun. 25 [cited 2025 Sep. 28];27(2):16750. Available from: https://mail.mattioli1885journals.com/index.php/progressinnutrition/article/view/16750