Residential fungal β-(1,3)-D-glucan exposure is associated with decreased pulmonary function in fibrotic pulmonary sarcoidosis.
Keywords:
Sarcoidosis, pulmonary fibrosis, indoor air, bioaerosol, β-(1,3)-D-glucan.Abstract
Background and aim: Sarcoidosis is a multi-system disease frequently affecting the lungs. It is thought to be mediated by gene-environment interaction; for example, epidemiological data show organic aerosol exposure increases risk of pulmonary sarcoidosis. The aim of this study was to assess whether exposure to bioaerosol associates with worse lung disease in patients with pulmonary sarcoidosis.
Methods: Using an observational, cohort study design, we measured residential exposure to fungal and bacterial cell wall material, β-(1,3)-D-glucan (BDG) and endotoxin, respectively, in healthy control subjects and those with pulmonary sarcoidosis. In the case cohort, we compared bioaerosol concentrations to pulmonary disease severity, assessed by pulmonary function testing, qualitative chest computed tomography (CT), and serum biomarkers. Log-transformed bioaerosol concentrations were compared to lung function and significance and correlation determined by Pearson correlation.
Results: Homes of subjects with sarcoidosis had higher BDG and endotoxin concentrations than control subjects. Patients with significant pulmonary fibrosis had greater disease severity (Wasfi severity score, visual analogue scale) and reduced pulmonary function compared to those without fibrosis (all P<0.01). Residential fungal BDG correlated with declining FVC, only in patients with fibrosis on CT imaging (P=0.02). Survey data revealed higher BDG concentrations were found in homes of cat-owners, and the number of houseplants owned correlated with declines in FVC and FEV1 (P=0.05 and 0.02, respectively). In patients without fibrosis, eight inflammatory markers correlated with BDG (6CKine/CCL21, IL-9, IL-17F, IL-21, IL-28A, I-309, MIP-1β, TARC), while in those with pulmonary fibrosis, BDG correlated with two inflammatory markers (Eotaxin-3, M-CSF), suggesting immune anergy to inhaled antigens in patients with fibrosis.
Conclusions: In patients with pulmonary fibrosis, disease severity was correlated with residential exposure to fungal cell wall material, but not gram-negative bacterial cell wall material. These patients may experience immune anergy to inhaled antigens.
References
1. Iannuzzi MC, Rybicki BA, Teirstein AS. Sarcoidosis. N Engl J Med. 2007 Nov 22;357(21):2153–65. doi: 10.1056/NEJMra071714.
2. Üzmezoğlu B, Şimşek C, Gülgösteren S, Gebeşoğlu B, Sarı G, Çelik D. Sarcoidosis in iron-steel industry: mini case series. Sarcoidosis Vasc Diffuse Lung Dis Off J WASOG. 2017;34(4):365–72. doi: 10.36141/svdld.v34i4.6185.
3. Chen ES, Moller DR. Etiologies of Sarcoidosis. Clin Rev Allergy Immunol. 2015 Aug;49(1):6–18. doi: 10.1007/s12016-015-8481-z.
4. Müller-Quernheim J, Prasse A, Zissel G. Pathogenesis of sarcoidosis. Presse Medicale Paris Fr 1983. 2012 Jun;41(6 Pt 2):e275-287. doi: 10.1016/j.lpm.2012.03.018.
5. Saltini C, Pallante M, Puxeddu E, et al. M. avium binding to HLA-DR expressed alleles in silico: a model of phenotypic susceptibility to sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis Off J WASOG. 2008 Dec;25(2):100–16. PMID: 19382529.
6. Judson MA. Environmental Risk Factors for Sarcoidosis. Front Immunol. 2020;11:1340. doi: 10.3389/fimmu.2020.01340.
7. Rossman MD, Thompson B, Frederick M, et al. HLA and environmental interactions in sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis Off J WASOG. 2008 Dec;25(2):125–32. PMID: 19382531.
8. Beijer E, Kraaijvanger R, Roodenburg C, Grutters JC, Meek B, Veltkamp M. Simultaneous testing of immunological sensitization to multiple antigens in sarcoidosis reveals an association with inorganic antigens specifically related to a fibrotic phenotype. Clin Exp Immunol. 2021 Jan;203(1):115–24. doi: 10.1111/cei.13519.
9. Barnard J, Rose C, Newman L, et al. Job and industry classifications associated with sarcoidosis in A Case-Control Etiologic Study of Sarcoidosis (ACCESS). J Occup Environ Med. 2005 Mar;47(3):226–34. doi: 10.1097/01.jom.0000155711.88781.91.
10. Newman LS, Rose CS, Bresnitz EA, et al. A case control etiologic study of sarcoidosis: environmental and occupational risk factors. Am J Respir Crit Care Med. 2004 Dec 15;170(12):1324–30. doi: 10.1164/rccm.200402-249OC.
11. Kucera GP, Rybicki BA, Kirkey KL, et al. Occupational risk factors for sarcoidosis in African-American siblings. Chest. 2003 May;123(5):1527–35. doi: 10.1378/chest.123.5.1527.
12. Laney AS, Cragin LA, Blevins LZ, et al. Sarcoidosis, asthma, and asthma-like symptoms among occupants of a historically water-damaged office building. Indoor Air. 2009 Feb;19(1):83–90. doi: 10.1111/j.1600-0668.2008.00564.x.
13. Huntley CC, Patel K, Mughal AZ, et al. Airborne occupational exposures associated with pulmonary sarcoidosis: a systematic review and meta-analysis. Occup Environ Med. 2023 Oct;80(10):580–9. doi: 10.1136/oemed-2022-108632.
14. Terčelj M, Salobir B, Harlander M, Rylander R. Fungal exposure in homes of patients with sarcoidosis - an environmental exposure study. Environ Health Glob Access Sci Source. 2011 Jan 20;10(1):8. PMID: 21251285.
15. Greaves SA, Ravindran A, Santos RG, et al. CD4+ T cells in the lungs of acute sarcoidosis patients recognize an Aspergillus nidulans epitope. J Exp Med. 2021 Oct 4;218(10):e20210785. doi: 10.1084/jem.20210785.
16. Douwes J, Thorne P, Pearce N, Heederik D. Bioaerosol health effects and exposure assessment: progress and prospects. Ann Occup Hyg. 2003 Apr;47(3):187–200. doi: 10.1093/annhyg/meg032.
17. Thorne PS. Environmental endotoxin exposure and asthma. J Allergy Clin Immunol. 2021 Jul;148(1):61–3. doi: 10.1016/j.jaci.2021.05.004.
18. Crouser ED, Maier LA, Wilson KC, et al. Diagnosis and Detection of Sarcoidosis. An Official American Thoracic Society Clinical Practice Guideline. Am J Respir Crit Care Med. 2020 Apr 15;201(8):e26–51. doi: 10.1164/rccm.202002-0251ST.
19. Wasfi YS, Rose CS, Murphy JR, et al. A new tool to assess sarcoidosis severity. Chest. 2006 May;129(5):1234–45. doi: 10.1378/chest.129.5.1234.
20. Schanberg LE, Anthony KK, Gil KM, Lefebvre JC, Kredich DW, Macharoni LM. Family pain history predicts child health status in children with chronic rheumatic disease. Pediatrics. 2001 Sep;108(3):E47. doi: 10.1542/peds.108.3.e47.
21. Cox CE, Donohue JF, Brown CD, Kataria YP, Judson MA. The Sarcoidosis Health Questionnaire: a new measure of health-related quality of life. Am J Respir Crit Care Med. 2003 Aug 1;168(3):323–9. doi: 10.1164/rccm.200211-1343OC.
22. Kilburg-Basnyat B, Metwali N, Thorne PS. Effect of deployment time on endotoxin and allergen exposure assessment using electrostatic dust collectors. Ann Occup Hyg. 2015 Jan;59(1):104–15. doi: 10.1093/annhyg/meu063.
23. Aketagawa J, Tanaka S, Tamura H, Shibata Y, Saitô H. Activation of limulus coagulation factor G by several (1-->3)-beta-D-glucans: comparison of the potency of glucans with identical degree of polymerization but different conformations. J Biochem (Tokyo). 1993 Jun;113(6):683–6. doi: 10.1093/oxfordjournals.jbchem.a124103.
24. Kilburg-Basnyat B, Metwali N, Thorne PS. Performance of electrostatic dust collectors (EDCs) for endotoxin assessment in homes: Effect of mailing, placement, heating, and electrostatic charge. J Occup Environ Hyg. 2016;13(2):85–93. doi: 10.1080/15459624.2015.1078468.
25. Hoppe Parr KA, Hađina S, Kilburg-Basnyat B, et al. Modification of sample processing for the Limulus amebocyte lysate assay enhances detection of inflammogenic endotoxin in intact bacteria and organic dust. Innate Immun. 2017 Apr;23(3):307–18. doi: 10.1177/1753425917694084.
26. Kwon JH, Choi O, Kim J. First Report of Kalanchoe Leaf Scorch Caused by Stemphylium xanthosomatis in Korea. Plant Dis. 2012 Feb;96(2):292. doi: 10.1094/PDIS-05-11-0403.
27. Metwali N, Stapleton EM, Hadina S, Thorne PS. Exposure to structurally unique β-d-glucans differentially affects inflammatory responses in male mouse lungs. Physiol Rep. 2024 Jun;12(12):e16115. doi: 10.14814/phy2.16115.
28. Rankin J, Kobayashi M, Barbee RA, Dickie HA. AGRICULTURAL DUSTS AND DIFFUSE PULMONARY FIBROSIS. Arch Environ Health. 1965 Feb;10:278–82. doi: 10.1080/00039896.1965.10663996.
29. Cesta MF, Ryman-Rasmussen JP, Wallace DG, et al. Bacterial lipopolysaccharide enhances PDGF signaling and pulmonary fibrosis in rats exposed to carbon nanotubes. Am J Respir Cell Mol Biol. 2010 Aug;43(2):142–51. doi: 10.1165/rcmb.2009-0113OC.
30. Terčelj M, Stopinšek S, Ihan A, et al. In vitro and in vivo reactivity to fungal cell wall agents in sarcoidosis. Clin Exp Immunol. 2011 Oct;166(1):87–93. doi: 10.1111/j.1365-2249.2011.04456.x.
31. Miyara M, Amoura Z, Parizot C, et al. The immune paradox of sarcoidosis and regulatory T cells. J Exp Med. 2006 Feb 20;203(2):359–70. doi: 10.1084/jem.20050648.
32. Witte K, Witte E, Sabat R, Wolk K. IL-28A, IL-28B, and IL-29: promising cytokines with type I interferon-like properties. Cytokine Growth Factor Rev. 2010 Aug;21(4):237–51. doi: 10.1016/j.cytogfr.2010.04.002.
33. Lazear HM, Schoggins JW, Diamond MS. Shared and Distinct Functions of Type I and Type III Interferons. Immunity. 2019 Apr 16;50(4):907–23. doi: 10.1016/j.immuni.2019.03.025.
34. Egli A, Santer DM, O’Shea D, et al. IL-28B is a key regulator of B- and T-cell vaccine responses against influenza. PLoS Pathog. 2014 Dec;10(12):e1004556. doi: 10.1371/journal.ppat.1004556.
35. Moller DR. Cells and cytokines involved in the pathogenesis of sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis Off J WASOG. 1999 Mar;16(1):24–31. PMID: 10207939.
36. Wolk K, Witte K, Witte E, et al. Maturing dendritic cells are an important source of IL-29 and IL-20 that may cooperatively increase the innate immunity of keratinocytes. J Leukoc Biol. 2008 May;83(5):1181–93. doi: 10.1189/jlb.0807525.
37. Mochizuki I, Kubo K, Hond T. Widespread heavy damage of capillary endothelial cells in the pathogenesis of sarcoidosis--Evidence by monoclonal von Willebrand factor immunohistochemistry in the bronchus and lung of patients with sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis Off J WASOG. 2014 Oct 20;31(3):182–90. PMID: 25363217.
38. Kohan M, Puxeddu I, Reich R, Levi-Schaffer F, Berkman N. Eotaxin-2/CCL24 and eotaxin-3/CCL26 exert differential profibrogenic effects on human lung fibroblasts. Ann Allergy Asthma Immunol Off Publ Am Coll Allergy Asthma Immunol. 2010 Jan;104(1):66–72. doi: 10.1016/j.anai.2009.11.003.
39. Collison AM, Sokulsky LA, Sherrill JD, et al. TNF-related apoptosis-inducing ligand (TRAIL) regulates midline-1, thymic stromal lymphopoietin, inflammation, and remodeling in experimental eosinophilic esophagitis. J Allergy Clin Immunol. 2015 Oct;136(4):971–82. doi: 10.1016/j.jaci.2015.03.031.
40. Clayton F, Peterson K. Eosinophilic Esophagitis: Pathophysiology and Definition. Gastrointest Endosc Clin N Am. 2018 Jan;28(1):1–14. doi: 10.1016/j.giec.2017.07.011.
41. Asif H, Ribeiro Neto M, Culver D. Pulmonary fibrosis in sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis Off J WASOG. 2023 Sep 13;40(3):e2023027. doi: 10.36141/svdld.v40i3.14830.
42. Hancock A, Armstrong L, Gama R, Millar A. Production of interleukin 13 by alveolar macrophages from normal and fibrotic lung. Am J Respir Cell Mol Biol. 1998 Jan;18(1):60–5. doi: 10.1165/ajrcmb.18.1.2627.
43. Kikuchi N, Ishii Y, Morishima Y, et al. Nrf2 protects against pulmonary fibrosis by regulating the lung oxidant level and Th1/Th2 balance. Respir Res. 2010 Mar 18;11(1):31. doi: 10.1186/1465-9921-11-31.
44. Kjellin H, Silva E, Branca RM, et al. Alterations in the membrane-associated proteome fraction of alveolar macrophages in sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis Off J WASOG. 2016 Mar 29;33(1):17–28. PMID: 27055832.
45. Ushach I, Zlotnik A. Biological role of granulocyte macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) on cells of the myeloid lineage. J Leukoc Biol. 2016 Sep;100(3):481–9. doi: 10.1189/jlb.3RU0316-144R.
46. Rodriguez RM, Suarez-Alvarez B, Lavín JL, et al. Signal Integration and Transcriptional Regulation of the Inflammatory Response Mediated by the GM-/M-CSF Signaling Axis in Human Monocytes. Cell Rep. 2019 Oct 22;29(4):860-872.e5. doi: 10.1016/j.celrep.2019.09.035.
47. Hofer TP, Zawada AM, Frankenberger M, et al. slan-defined subsets of CD16-positive monocytes: impact of granulomatous inflammation and M-CSF receptor mutation. Blood. 2015 Dec 10;126(24):2601–10. doi: 10.1182/blood-2015-06-651331.
48. Nazaroff WW. The particles around us. Indoor Air. 2018 Mar;28(2):215–7. doi: 10.1111/ina.12444.
49. Liu H, Zhang X, Zhang H, et al. Effect of air pollution on the total bacteria and pathogenic bacteria in different sizes of particulate matter. Environ Pollut Barking Essex 1987. 2018 Feb;233:483–93. doi: 10.1016/j.envpol.2017.10.070.
50. Buma R, Maeda T, Kamei M, Kourai H. Pathogenic bacteria carried by companion animals and their susceptibility to antibacterial agents. Biocontrol Sci. 2006 Mar;11(1):1–9. doi: 10.4265/bio.11.1.
51. Kim KH, Kabir E, Jahan SA. Airborne bioaerosols and their impact on human health. J Environ Sci China. 2018 May;67:23–35. doi: 10.1016/j.jes.2017.08.027.
52. LeBouf R, Yesse L, Rossner A. Seasonal and diurnal variability in airborne mold from an indoor residential environment in northern New York. J Air Waste Manag Assoc 1995. 2008 May;58(5):684–92. doi: 10.3155/1047-3289.58.5.684.
53. Crawford C, Reponen T, Lee T, et al. Temporal and spatial variation of indoor and outdoor airborne fungal spores, pollen, and (1→3)-β-d-glucan. Aerobiologia. 2009 Sep;25(3):147–58. doi: 10.1007/s10453-009-9120-z.
54. Banoei MM, Iupe I, Bazaz RD, et al. Metabolomic and metallomic profile differences between Veterans and Civilians with Pulmonary Sarcoidosis. Sci Rep. 2019 Dec 20;9(1):19584. doi: 10.1038/s41598-019-56174-8.
55. Parker GJ, Ong CH, Manges RB, et al. A Novel Method of Collecting and Chemically Characterizing Milligram Quantities of Indoor Airborne Particulate Matter. Aerosol Air Qual Res. 2019;19(11):2387–95. doi: 10.4209/aaqr.2019.04.0182.
56. Stapleton EM, Simmering JE, Manges RB, et al. Continuous in-home PM2.5 concentrations of smokers with and without a history of respiratory exacerbations in Iowa, during and after an air purifier intervention. J Expo Sci Environ Epidemiol. 2020 Sep;30(5):778–84. doi: 10.1038/s41370-020-0235-1.
Downloads
How to Cite
Issue
Section
License
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Transfer of Copyright and Permission to Reproduce Parts of Published Papers.
Authors retain the copyright for their published work. No formal permission will be required to reproduce parts (tables or illustrations) of published papers, provided the source is quoted appropriately and reproduction has no commercial intent. Reproductions with commercial intent will require written permission and payment of royalties.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.