Association of non-linear dynamics of heart rate variability with all-cause mortality in patients with sarcoidosis
Keywords:
prediction, all-cause mortality, sarcoidosisAbstract
Background and aim: Sarcoidosis (Sarc) is linked to increased morbidity and mortality. While 24-hour ambulatory ECG recording is essential for evaluating patients with cardiac symptoms, the complementary role of heart rate variability (HRV) for risk stratification in Sarc patients remains undefined. The aim of this observational study was the assessment of non-linear indices of HRV as independent predictors of mortality in Sarc.
Methods: 317 patients with confirmed diagnosis of Sarc, underwent comprehensive conventional cardiac testing, including Cardiac Magnetic Resonance (CMR) with late gadolinium enhancement (LGE). These patients were followed up for all-cause mortality as endpoint. Each patient underwent twenty-four-hour Holter monitoring, from which approximate entropy (APEN), short and long-term detrended fluctuation analysis (DFAα1 and DFAα2, respectively), as well as other HRV parameters, were calculated.
Results: The study recruited 317 patients (137 men, 180 women) with a mean age of 48.22 ± 11.88 years. Over a median follow-up period of approximately 48 months, 17 deaths were recorded. Competing risk analysis revealed that decreased DFAα1 was a robust prognostic indicator for increased total mortality. ROC analysis demonstrated that the area under the curve (AUC) of DFAα1 (< 0.95) for predicting mortality was 0.761 (95% confidence interval (CI) = 0.617–0.905). DFAα1 ≥ 0.95 was associated with total mortality (HR = 0.109, 95% CI = 0.033–0.362, P= 0.0003).
Conclusion: Evaluation of cardiac autonomic dysfunction by DFAα1 serves as an independent predictor for all-cause mortality in patients with Sarc.
References
1. Kiril G, Lower EE, Baughman RP. Predictors of mortality in pulmonary sarcoidosis. Chest. 2018 Jan;153(1):105 113. doi: 10.1016/j.chest.2017.07.008
2. Belperio J, Shaikh F, Abtin F, et al. Diagnosis and treatment of pulmonary sarcoidosis: a review. JAMA. 2022 Mar 1;327(9):856 867. doi: 10.1001/jama.2022.1570
3. Kouranos V, Tzelepis GE, Rapti A, et al. Complementary role of CMR to conventional screening in the diagnosis and prognosis of cardiac sarcoidosis. JACC Cardiovasc Imaging. 2017 Dec;10(12):1437 1447. doi: 10.1016/j.jcmg.2016.11.019
4. Baughman RP, Winget DB, Bowen EH, Lower EE. Predicting respiratory failure in sarcoidosis patients. Sarcoidosis Vasc Diffuse Lung Dis. 1997 Sep;14(2):154 158.
5. Jarczok MN, Weimer K, Braun C, et al. Heart rate variability in the prediction of mortality: a systematic review and meta analysis of healthy and patient populations. Neurosci Biobehav Rev. 2022 Dec;143:104907. doi: 10.1016/j.neubiorev.2022.104907
6. Mol MBA, Strous MTA, van Osch FHM, et al. Heart rate variability (HRV) predicts outcomes in COVID 19. PLoS One. 2021 Oct 28;16(10):e0258841. doi: 10.1371/journal.pone.0258841
7. Nakanishi K, Jin Z, Homma S, et al. Association between heart rate and subclinical cerebrovascular disease in the elderly. Stroke. 2018 Feb;49(2):319 324. doi: 10.1161/strokeaha.117.019355
8. Kleiger RE, Miller JP, Bigger JT Jn, et al. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol. 1987 Feb 1;59(4):256 262.
9. Tiwari R, Kumar R, Malik S, et al. Analysis of heart rate variability and implication of different factors on heart rate variability. Curr Cardiol Rev. 2021;17(5):e160721189770. doi: 10.2174/1573403x16999201231203854
10. Armstrong R, Wheen P, Brandon L, et al. Heart rate: control mechanisms, pathophysiology and assessment of the neurocardiac system in health and disease. QJM. 2022 Dec 12;115(12):806 812. doi: 10.1093/qjmed/hcab016
11. Mizobuchi A, Osawa K, Tanaka M. Detrended fluctuation analysis can detect the impairment of heart rate regulation in patients with heart failure with preserved ejection fraction. J Cardiol. 2021 Jan;77(1):72 78. doi: 10.1016/j.jjcc.2020.07.027
12. Henriques T, Ribeiro M, Teixeira A, et al. Nonlinear methods most applied to heart rate time series: a review. Entropy (Basel). 2020 Mar 9;22(3):309. doi: 10.3390/e22030309
13. Ruffini N, D’Alessandro G, Mariani N, et al. Variations of high frequency parameter of heart rate variability following osteopathic manipulative treatment in healthy subjects compared to control group and sham therapy: randomized controlled trial. Front Neurosci. 2015 Aug 4;9:272. doi: 10.3389/fnins.2015.00272
14. Olivieri F, Biscetti L, Pimpini L, et al. Heart rate variability and autonomic nervous system imbalance: potential biomarkers and detectable hallmarks of ageing and inflammaging. Ageing Res Rev. 2024 Nov;101:102521. doi: 10.1016/j.arr.2024.102521
15. Alyahya A, Charman S, Okwose N, et al. Impact of age and sex on heart rate variability and cardiometabolic function in healthy adults. Exp Gerontol. 2024 Nov;197:112591. doi: 10.1016/j.exger.2024.112591
16. Statement on sarcoidosis. Joint statement of the American Thoracic Society (ATS), the European Respiratory Society (ERS), and the World Association of Sarcoidosis and Other Granulomatous Disorders (WASOG) adopted by the ATS Board of Directors and by the ERS Executive Committee. Am J Respir Crit Care Med. 1999 Aug;160(2):736 755. doi: 10.1164/ajrccm.160.2.ats4 99
17. Schiller NB, Shah PM, Crawford M, et al. Recommendations for quantitation of the left ventricle by two dimensional echocardiography: American Society of Echocardiography Committee on Standards, Subcommittee on Quantitation of Two Dimensional Echocardiograms. J Am Soc Echocardiogr. 1989;2:358 367.
18. Friedrich MG, Sechtem U, Schulz Menger J, et al. Cardiovascular magnetic resonance in myocarditis: a JACC white paper. J Am Coll Cardiol. 2009;53:1475 1487. doi: 10.1016/j.jacc.2009.02.007
19. Tarvainen MP, Niskanen JP, Lipponen JA, et al. Kubios HRV – heart rate variability analysis software. Comput Methods Programs Biomed. 2014;113:210 220. doi: 10.1016/j.cmpb.2013.07.024
20. Richman JS, Moorman JR. Physiological time series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol. 2000;278(6):H2039 H2049. doi: 10.1152/ajpheart.2000.278.6.H2039
21. Peng CK, Havlin S, Stanley HE, Goldberger AL. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos. 1995;5(1):82 87. doi: 10.1063/1.166141
22. Aktop Z, Tanrıverdi H, Uygur F, et al. Diurnal characteristics of heart rate variability in patients with sarcoidosis. Herz. 2017 Aug;42(5):498 504. doi: 10.1007/s00059 016 4486 5
23. Uslu N, Akyol A, Gorgulu S, et al. Heart rate variability in patients with systemic sarcoidosis. Ann Noninvasive Electrocardiol. 2006 Jan;11(1):38 42. doi: 10.1111/j.1542 474X.2006.00080.x
24. Tiran B, Heller I, Isakov A, Barnea O, Greif J, Topilsky M. Heart rate variability in sarcoidosis: a frequency domain analysis. Eur J Intern Med. 2004 Dec;15(8):518 522. doi: 10.1016/j.ejim.2004.10.004
25. Campos LA, Pereira VL Jr, Muralikrishna A, et al. Mathematical biomarkers for the autonomic regulation of cardiovascular system. Front Physiol. 2013 Oct 7;4:279. doi: 10.3389/fphys.2013.00279
26. Gunther A, Witte OW, Hoyer D. Autonomic dysfunction and risk stratification assessed from heart rate pattern. Open Neurol J. 2010;4:39 49. doi: 10.2174/1874205X01004010039
27. Huikuri HV, Mäkikallio TH. Heart rate variability in ischemic heart disease. Auton Neurosci Basic Clin. 2001;90:95 101. doi: 10.1016/S1566 0702(01)00273 9
28. Benichou T, Pereira B, Mermillod M, et al. Heart rate variability in type 2 diabetes mellitus: a systematic review and meta analysis. PLoS One. 2018 Apr 2;13(4):e0195166. doi: 10.1371/journal.pone.0195166
29. Lin K, Wei L, Huang Z, Zeng Q. Combination of Ewing test, heart rate variability, and heart rate turbulence analysis for early diagnosis of diabetic cardiac autonomic neuropathy. Med (Baltimore). 2017 Nov;96(45):e8296. doi: 10.1097/MD.0000000000008296
30. Flachenecker P, Wolf A, Krauser M, et al. Cardiovascular autonomic dysfunction in multiple sclerosis: correlation with orthostatic intolerance. J Neurol. 1999 Jul;246(7):578 586. doi: 10.1007/s004150050407
31. Vildeira G, Castro P, Vieira B, et al. Autonomic dysfunction in multiple sclerosis is better detected by heart rate variability and is not correlated with central autonomic network damage. J Neurol Sci. 2016 Aug 15;367:133 137. doi: 10.1016/j.jns.2016.05.049
32. Kamal A. Assessment of autonomic function in patients with rheumatoid arthritis using spectral analysis and approximate entropy method. Neurosciences (Riyadh). 2007 Apr;12(2):136 139.
33. Anichkov DA, Shostak NA, Ivanov DS. Heart rate variability is related to disease activity and smoking in rheumatoid arthritis patients. Int J Clin Pract. 2007 May;61(5):777 783. doi: 10.1111/j.1742 1241.2006.01099.x
34. Adlan AM, Lip GY, Paton JF, et al. Autonomic function and rheumatoid arthritis: a systematic review. Semin Arthritis Rheum. 2014 Dec;44(3):283 304. doi: 10.1016/j.semarthrit.2014.06.003
35. Milovanović B, Stojanović L, Milićevik N, et al. Cardiac autonomic dysfunction in patients with systemic lupus, rheumatoid arthritis and sudden death risk. Srp Arh Celok Lek. 2010 Jan Feb;138(1 2):26 32. doi: 10.2298/sarh1002026m
36. Ferri C, Emdin M, Giuggioli D, et al. Autonomic dysfunction in systemic sclerosis: time and frequency domain 24 hour heart rate variability analysis. Br J Rheumatol. 1997 Jun;36(6):669 676. doi: 10.1093/rheumatology/36.6.669
37. Sessa F, Anna V, Messina G, et al. Heart rate variability as predictive factor for sudden cardiac death. Aging (Albany NY). 2018 Feb 23;10(2):166 177. doi: 10.18632/aging.101386
38. Pezawas T, Diedrich A, Robertson D, et al. Risk of arrhythmic death in ischemic heart disease: a prospective, controlled, observer blind risk stratification over 10 years. Eur J Clin Invest. 2017 Mar;47(3):231 240. doi: 10.1111/eci.12729
39. Maheshwari A, Norby FL, Soliman EZ, et al. Low heart rate variability in a 2 minute electrocardiogram recording is associated with an increased risk of sudden cardiac death in the general population: the Atherosclerosis Risk in Communities Study. PLoS One. 2016 Aug 23;11(8):e0161648. doi: 10.1371/journal.pone.0161648
40. Demming T, Sandrock S, Kuhn C, et al. Deceleration capacity: a novel predictor for total mortality in patients with non ischemic dilated cardiomyopathy. Int J Cardiol. 2016 Oct 15;221:289 293. doi: 10.1016/j.ijcard.2016.06.205
41. Aeschbacher S, Schoen T, Dörig L, et al. Heart rate, heart rate variability and inflammatory biomarkers among young and healthy adults. Ann Med. 2017 Feb;49(1):32 41. doi: 10.1080/07853890.2016.1226512
42. Kop WJ, Stein PK, Tracy RP, et al. Autonomic nervous system dysfunction and inflammation contribute to the increased cardiovascular mortality risk associated with depression. Psychosom Med. 2010 Sep;72(7):626 635. doi: 10.1097/PSY.0b013e3181eadd2b
43. Tapanainen JM, Thomsen PE, Køber L, et al. Fractal analysis of heart rate variability and mortality after an acute myocardial infarction. Am J Cardiol. 2002;90:347 352. doi: 10.1016/S0002 9149(02)02488 8
44. Au Yeung WT, Reinhall PG, Poole JE, et al. SCD HeFT: use of R R interval statistics for long term risk stratification for arrhythmic sudden cardiac death. Heart Rhythm. 2015 Oct;12(10):2058 2066. doi: 10.1016/j.hrthm.2015.06.030
45. Valencia JF, Vallverdú M, Porta A, et al. Ischemic risk stratification by means of multivariate analysis of heart rate variability. Physiol Meas. 2013 Mar;34(3):325 338. doi: 10.1088/0967 3334/34/3/325
46. Ho YL, Lin C, Lin YH, Lo MT. The prognostic value of non linear analysis of heart rate variability in patients with congestive heart failure—a pilot study of multiscale entropy. PLoS One. 2011 Apr 13;6(4):e18699. doi: 10.1371/journal.pone.0018699
47. de Godoy MF, Takakura IT, Correa PR, et al. Preoperative nonlinear behavior in heart rate variability predicts morbidity and mortality after coronary artery bypass graft surgery. Med Sci Monit. 2009 Mar;15(3):CR117 CR122.
48. Arzeno NM, Kearney MT, Eckberg DL, et al. Heart rate chaos as a mortality predictor in mild to moderate heart failure. Conf Proc IEEE Eng Med Biol Soc. 2007;2007:5051 5054. doi: 10.1109/IEMBS.2007.4353475
49. Mahon NG, Hedman AE, Padula M, et al. Fractal correlation properties of R R interval dynamics in asymptomatic relatives of patients with dilated cardiomyopathy. Eur J Heart Fail. 2002 Mar;4(2):151 158. doi: 10.1016/S1388 9842(01)00227 6
50. Barker C. The mean, median, and confidence intervals of the Kaplan Meier survival estimate—computations and applications. Am Statistician. 2009;63:78 80.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Elias Giallafos, Ioannis Ilias, Spiros Katsanos, Likourgos Kolilekas, Efrosini Manali, Aglaia Vakrakou, Theodore Papaioannou, Kostas Zisimos, Gethsimani Seitaridi, Giannis Parisis, Nikos Koulouris, Spiros Papiris

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Transfer of Copyright and Permission to Reproduce Parts of Published Papers.
Authors retain the copyright for their published work. No formal permission will be required to reproduce parts (tables or illustrations) of published papers, provided the source is quoted appropriately and reproduction has no commercial intent. Reproductions with commercial intent will require written permission and payment of royalties.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



