This is a preview and has not been published.

Steady-State Auditory Evoked Potentials in Workers Exposed to Occupational Noise

Authors

  • Mariana Keiko Kamita Department of Physiotherapy, Speech-Language and Hearing Sciences and Occupation Therapy, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil https://orcid.org/0000-0001-9150-6653
  • Clayton Henrique Rocha Department of Physiotherapy, Speech-Language and Hearing Sciences and Occupation Therapy, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil https://orcid.org/0000-0002-9087-323X
  • Liliane Aparecida Fagundes Silva Department of Physiotherapy, Speech-Language and Hearing Sciences and Occupation Therapy, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil https://orcid.org/0000-0001-8985-0447
  • Alessandra Giannella Samelli Department of Physiotherapy, Speech-Language and Hearing Sciences and Occupation Therapy, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil https://orcid.org/0000-0002-7164-8942
  • Carla Gentile Matas Department of Physiotherapy, Speech-Language and Hearing Sciences and Occupation Therapy, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil https://orcid.org/0000-0002-9408-7172

Keywords:

Hearing. Noise, noise effects, auditory evoked potentials, hearing tests, noise, occupational

Abstract

Background: The present study aims to investigate neural synchrony, as measured by Auditory Steady State Response (ASSR), in individuals with normal hearing who are exposed and not exposed to occupational noise, thereby providing insights into hidden hearing loss within the central auditory nervous system, and justifying the importance of exploring auditory neural function in populations at risk. Methods: A cross-sectional study involved 30 noise-exposed individuals in the Study Group and 30 unexposed individuals in the Control Group, all paired by an average age of 35 years. The following procedures were performed on all individuals: clinical and occupational history, meatoscopy, immitanciometry, pure tone audiometry, speech audiometry, and ASSR (40Hz). We analyzed the audiometric hearing thresholds at frequencies of 1 kHz and 4 kHz, the electrophysiological thresholds estimated by ASSR, and the comparison of the differences between them: the thresholds estimated by ASSR and the audiometry thresholds. The data were analyzed using both descriptive and inferential statistics. P-values ≤ 0.05 were considered significant. Results: When comparing hearing thresholds at 1 kHz and 4 kHz between groups, we found significant differences, with the SG showing higher hearing thresholds than the CG bilaterally. No significant differences were seen in the electrophysiological thresholds estimated by ASSR, nor in the comparison between the ASSR-estimated threshold and the psychoacoustic hearing threshold groups. Conclusions: The results of this study suggest that workers exposed to occupational noise did not show detectable changes in neural synchrony in the midbrain, thalamus, or primary auditory cortex when compared to individuals without occupational noise exposure.

References

1. Pienkowski M, Eggermont JJ. Reversible long-term changes in auditory processing in mature auditory cortex in the absence of hearing loss induced by passive, moderate-level sound exposure. Ear Hear. 2012;33(3):305-14. Doi: https://doi.org/10.1097/aud.0b013e318241e880.

2. Kujawa SG, Liberman MC. Synaptopathy in the noise-exposed and aging cochlea: primary neural degeneration in acquired sensorineural hearing loss. Hear Res 2015;330:191-9. Doi: https://doi.org/10.1016/j.heares.2015.02.009.

3. Shi L, Chang Y, Li X, et al. Cochlear Synaptopathy and Noise-Induced Hidden Hearing Loss. Neural Plast. 2016;2016:6143164. Doi: https://doi.org/10.1155/2016/6143164.

4. Eggermont JJ. Effects of long-term non-traumatic noise exposure on the adult central auditory system. Hearing problems without hearing loss. Hear Res. 2017;352:12-22. Doi: https://doi.org/10.1016/j.heares.2016.10.015.

5. Falasca V, Greco A, Ralli M. Noise induced hearing loss: The role of oxidative stress. Otolaryngol Open J. 2017:S1-5. Doi: http://doi.org/10.1288/00005537-199108000-00005.

6. Kobel M, Le Prell CG, Liu J, et al. Noise-induced cochlear synaptopathy: Past findings and future studies. Hear Res. 2017;349:148-54. Doi: https://doi.org/10.1016/j.heares.2016.12.008.

7. Kujawa SG, Liberman MC. Adding Insult to Injury: Cochlear Nerve Degeneration after “Temporary” Noise-Induced Hearing Loss. J Neurosci. 2009;29(45):14077-850. Doi: https://doi.org/10.1523/jneurosci.2845-09.2009.

8. Liberman LD, Wang H, Liberman MC. Opposing gradients of ribbon size and AMPA receptor expression underlie sensitivity differences among cochlear-nerve/hair-cell synapses. J Neurosci. 2011;31(3):801-8. Doi: https://doi.org/10.1523/jneurosci.3389-10.2011.

9. Bharadwaj HM, Verhulst S, Shaheen L, Liberman MC, Shinn-Cunningham BG. Cochlear neuropathy and the coding of supra-threshold sound. Front Syst Neurosci. 2014; 21;8:26. Doi: https://doi.org/10.3389/fnsys.2014.00026.

10. Knipper M, Van Dijk P, Nunes I, Rüttiger L, Zimmermann U. Advances in the neurobiology of hearing disorders: Recent developments regarding the basis of tinnitus and hyperacusis. Prog. Neurobiol 2013;111:17–33. Doi: https://doi.org/10.1016/j.pneurobio.2013.08.002.

11. Valderrama JT, de la Torre A, McAlpine D. The hunt for hidden hearing loss in humans: From preclinical studies to effective interventions. Front Neurosci. 2022;15:16.1000304. Doi: https://doi.org/10.3389/fnins.2022.1000304.

12. Grinn SK, Le Prell CG. Evaluation of hidden hearing loss in normal-hearing firearm users. Front Neurosci. 2022;16:1005148. Doi: https://doi.org/10.3389/fnins.2022.1005148.

13. Gürkan S, Başokçu O, Durankaya SM, et al. Central Auditory Changes Associated with Age-related Hearing Loss. Clin EEG Neurosci. 2024;55(4):508-517. Doi: https://doi.org/10.1177/15500594241243116.

14. Moore BCJ. The Role of Temporal Fine Structure Processing in Pitch Perception, Masking, and Speech Perception for Normal-Hearing and Hearing-Impaired People. J Assoc Res Otolaryngol. 2008;9(4):399-406. Doi: https://doi.org/10.1007/s10162-008-0143-x.

15. Plack CJ, Barker D, Prendergast G. Perceptual consequences of “hidden” hearing loss. Trends Hear. 2014;18:2331216514550621. Doi: https://doi.org/10.1177/2331216514550621.

16. Plack CJ, Leger A, Prendergast G, et al. Towards a diagnostic test for hidden hearing loss. Trends Hear. 2016;20:2331216516657466. Doi: https://doi.org/10.1177/2331216516657466.

17. Picton TW, John MS, Dimitrijevic A, Purcell D. Human auditory steady-state responses. Int J Audiol. 2003;42(4):177-219. Doi: https://doi.org/10.3109/14992020309101316.

18. Rocha CH, Lisboa G, Padilha FYOMM, Rabelo CM, Samelli AG. Effects of hearing protector devices on speech intelligibility: the importance of individualized assessment. Int J Occup Saf Ergon. 2022;28(2):1227-1234. Doi: https://doi.org/10.1080/10803548.2021.1880763

19. Lloyd LL, Kaplan H. Audiometric interpretation: a manual of basic audiometry. University Park Press: Baltimore 1978:16-7.

20. Jasper, H.H. The Ten-Twenty Electrode System of the International Federation. Electroencephalogr Clin Neurophysiol. (1958)10, 371-375.

21. Han D, Mo L, Liu H, et al. Threshold estimation in children using auditory steady-state responses to multiple simultaneous stimuli. ORL J Otorhinolaryngol Relat Spec. 2006;68(2):64-8. Doi: https://doi.org/10.1159/000091091.

22. Rodrigues GRI, Lewis DR. Potenciais evocados auditivos de estado estável em crianças com perda auditiva cocleares. Pró fono. 2010;22(1):37-42. Doi: https://doi.org/10.1590/S0104-56872010000100008.

23. Resnik J, Polley DB. Cochlear neural degeneration disrupts hearing in background noise by increasing auditory cortex internal noise. Neuron. 2021;17(6):984-996. Doi: https://doi.org/10.1016/j.neuron.2021.01.015.

24. Shinn JB, Musiek FE. The Auditory Steady State Response in Individuals with Neurological Insult of the Central Auditory Nervous System. J Am Acad Audiol. 2007;18:826-45. Doi: https://doi.org/10.3766/jaaa.18.10.3.

25. Grose JH, Buss E, Hall JW 3rd. Loud Music Exposure and Cochlear Synaptopathy in Young Adults: Isolated Auditory Brainstem Response Effects but No Perceptual Consequences. Trends Hear. 2017;21:2331216517737417. Doi: https://doi.org/10.1177/2331216517737417.

26. Guest H, Munro KJ, Prendergast G, et al. Impaired speech perception in noise with a normal audiogram: No evidence for cochlear synaptopathy and no relation to lifetime noise exposure. Hear Res. 2018;364:142-151. Doi: https://doi.org/10.1016/j.heares.2018.03.008.

27. Shaheen LA, Valero MD, Liberman MC. Towards a Diagnosis of Cochlear Neuropathy with Envelope Following Responses. J Assoc Res Otolaryngol. 2015;16(6):727–745. Doi: https://doi.org/10.1007/s10162-015-0539-3.

28. Valero MD, Burton JA, Hauser SN, et al. Noise-induced cochlear synaptopathy in rhesus monkeys (Macaca mulatta). Hear. 2017;353:213–223. Doi: https://doi.org/10.1016/j.heares.2017.07.003.

29. Bramhall NF, Niemczak CE, Kampel SD, et al. Evoked Potentials Reveal Noise Exposure-Related Central Auditory Changes Despite Normal Audiograms. Am J Audiol. 2020;29:152-164. Doi: https://doi.org/10.1044/2019_aja-19-00060.

30. Bharadwaj HM, Masud S, Mehraei G, et al. Individual differences reveal correlates of hidden hearing deficits. J Neurosci. 2015;35(5):2161-72. Doi: https://doi.org/10.1523/jneurosci.3915-14.2015.

31. Mepani AM, Verhulst S, Hancock KE, et al. Envelope following responses predict speech-in-noise performance in normal-hearing listeners. J Neurophysiol. 2021;125(4):1213-1222. Doi: https://doi.org/10.1152/jn.00620.2020.

32. Morata TC, Gong W, Tikka C, Samelli AG, Verbeek JH. Hearing protection field attenuation estimation systems and associated training for reducing workers' exposure to noise. Cochrane Database Syst Rev. 2024;5(5):CD015066. Doi: https://doi.org/10.1002/14651858.CD015066.pub2

Downloads

Issue

Section

Original articles

How to Cite

1.
Kamita MK, Rocha CH, Silva LAF, Samelli AG, Matas CG. Steady-State Auditory Evoked Potentials in Workers Exposed to Occupational Noise. Med Lav [Internet]. [cited 2025 Dec. 12];116(6):17196. Available from: https://mail.mattioli1885journals.com/index.php/lamedicinadellavoro/article/view/17196