Preliminary study of the point cloud obtained with a low cost structured light scanner of third lower human molars
Main Article Content
Keywords
Structured light, point cloud, human teeth, protocol, new digital index
Abstract
This study presents a preliminary exploration of an objective, operator-independent method for acquiring and analyzing point cloud data from human lower third molars using low-cost equipment. Emphasizing the need for affordability in the field, this research begins the development of a technical protocol for the validation and use of the structured light scanner EinScan-SP V1. Two human mandibular third molars from the crypt of Santa Maria Maggiore in Vercelli (Italy) are digitized. The teeth were scanned, and the resulting point clouds were processed using the Open3D library to extract and normalize digital indexes at different voxel levels. This work also introduces the concept of the Digital HyperUranium (IUD), a digital environment inspired by Platonic philosophy, to contextualize the mathematical processing of point clouds. The ultimate goal is to correlate digital indexes with biological profiles, enhancing the documentation and analysis of Cultural Heritage artifacts through affordable and automated digital acquisition methods.
References
Balletti, C., Bertellini, B., Gottardi, C., & Guerra, F. (2019). Geomatics techniques for the enhancement and preservation of cultural heritage. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W11, 133–140. https://doi.org/10.5194/isprs-archives-XLII-2-W11-133-2019
Bastir, M., García-Martínez, D., Torres-Tamayo, N., Palancar, C. A., Fernández-Pérez, F. J., Riesco-López, A., Osborne-Márquez, P., Ávila, M., & López-Gallo, P. (2019). Workflows in a virtual morphology lab: 3D scanning, measuring, and printing. Journal of Anthropological Sciences, 97, 107–134. Scopus. https://doi.org/10.4436/jass.97003
Colosimo, B. M., Pacella, M., & Senin, N. (2015). Multisensor data fusion via Gaussian process models for dimensional and geometric verification. Precision Engineering, 40, 199–213. Scopus. https://doi.org/10.1016/j.precisioneng.2014.11.011
Denis, D. J. (2021). Applied univariate, bivariate, and multivariate statistics: Understanding statistics for social and natural scientists, with applications in SPSS and R. John Wiley & Sons.
Diara, F. (2023). Structured-Light Scanning and Metrological Analysis for Archaeology: Quality Assessment of Artec 3D Solutions for Cuneiform Tablets. Heritage, 6(9), Article 9. https://doi.org/10.3390/heritage6090317
Dickin, F., Pollard, S., & Adams, G. (2021). Mapping and correcting the distortion of 3D structured light scanners. Precision Engineering, 72, 543–555. https://doi.org/10.1016/j.precisioneng.2021.06.001
Eigen: Eigen::SelfAdjointEigenSolver< MatrixType_ > Class Template Reference. (n.d.). Retrieved 2 July 2024, from https://eigen.tuxfamily.org/dox/classEigen_1_1SelfAdjointEigenSolver.html
Ericson, C. (2004). Real-time collision detection. Crc Press.
Evgenikou, V., & Georgopoulos, A. (2015). Investigating 3D reconstruction methods for small artifacts. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-5/W4, 101–108. https://doi.org/10.5194/isprsarchives-XL-5-W4-101-2015
Fusco, R., Messina, C., Tesi, C., & Vanni, A. (2023). “Capta est ne malitia mutaret intelletum eius...”: Study on a natural mummy from an underground cemetery (18-19th century). Med. Hist., 7, e2023044.
Garashchenko, Y., Kogan, I., & Rucki, M. (2022). Comparative accuracy analysis of triangulated surface models of a fossil skull digitized with various optic devices. Metrology and Measurement Systems, 29(1), Article 1. Scopus. https://doi.org/10.24425/mms.2022.138547
Georgopoulos, A., Oikonomou, Ch., Adamopoulos, E., & Stathopoulou, E. K. (2016). Evaluating unmanned aerial platforms for cultural heritage large scale mapping. In Remondino F., 3D Optical Metrology FBK Trento via Sommarive 18, 38123, Trento, Rieke-Zapp D., Pavelka K., Hodac J., Shortis M., Halounova L., Rinaudo F., Boehm J., Safar V., & Scaioni M. (Eds.), Int. Arch. Photogramm., Remote Sens. Spat. Inf. Sci. - ISPRS Arch. (Vol. 41, pp. 355–362). International Society for Photogrammetry and Remote Sensing; Scopus. https://doi.org/10.5194/isprsarchives-XLI-B5-355-2016
Jacobs, L., Dvorak, J., Cornelius, A., Zameroski, R., No, T., & Schmitz, T. (2023). Structured light scanning artifact-based performance study. Manufacturing Letters, 35, 873–882. https://doi.org/10.1016/j.mfglet.2023.07.014
Kassambara, A. (2017). Practical guide to principal component methods in R: PCA, M (CA), FAMD, MFA, HCPC, factoextra (Vol. 2). Sthda.
Kusuma Frisky, A. Z., Fajri, A., Brenner, S., & Sablatnig, R. (2020). Acquisition evaluation on outdoor scanning for archaeological artifact digitalization. In Farinella G.M., Radeva P., & Braz J. (Eds.), VISIGRAPP - Proc. Int. Jt. Conf. Comput. Vis., Imaging Comput. Graph. Theory Appl. (Vol. 5, pp. 792–799). SciTePress; Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85083513105&partnerID=40&md5=b399b8a26b2de81633365079b216a3dd
labdig3a/osteo_labdig: Digiltal laboratory for osteological measuremnts. (n.d.). Retrieved 2 June 2024, from https://github.com/labdig3a/osteo_labdig
Lyu, W., Ke, W., Sheng, H., Ma, X., & Zhang, H. (2024). Dynamic Downsampling Algorithm for 3D Point Cloud Map Based on Voxel Filtering. Applied Sciences, 14(8), Article 8. https://doi.org/10.3390/app14083160
Maté-González, M. Á., Aramendi, J., González-Aguilera, D., & Yravedra, J. (2017). Statistical comparison between low-cost methods for 3D characterization of cut-marks on bones. Remote Sensing, 9(9), Article 9. Scopus. https://doi.org/10.3390/rs9090873
Menna, F., Nocerino, E., Remondino, F., Dellepiane, M., Callieri, M., & Scopigno, R. (2016). 3D Digitization of an heritage masterpiece—A critical analysis on quality assessment. 41, 675–683. Scopus. https://doi.org/10.5194/isprsarchives-XLI-B5-675-2016
Morena, S., Barba, S., & Álvaro-Tordesillas, A. (2019). Shining 3D EinScan-Pro, application and validation in the field of cultural heritage, from the Chillida-Leku museum to the archaeological museum of Sarno. 42(2/W18), 135–142. Scopus. https://doi.org/10.5194/isprs-archives-XLII-2-W18-135-2019
Open3D - Docs—Python API (geometry, point cloud). (n.d.). Retrieved 2 June 2024, from https://www.open3d.org/docs/latest/python_api/open3d.geometry.PointCloud.html
Open3D/cpp/open3d/geometry/BoundingVolume.cpp at main · isl-org/Open3D. (n.d.). GitHub. Retrieved 2 June 2024, from https://github.com/isl-org/Open3D/blob/main/cpp/open3d/geometry/BoundingVolume.cpp
Osteo_labdig/sources/cgui/cgui.py at master · labdig3a/osteo_labdig · GitHub. (n.d.). Retrieved 2 July 2024, from https://github.com/labdig3a/osteo_labdig/blob/master/sources/cgui/cgui.py#L156C1-L209C25
Plato. (n.d.). Phaedrus.
Rose, J. C., & Ungar, P. S. (1998). Gross dental wear and dental microwear in historical perspective. In Dental anthropology: Fundamentals, limits and prospects (pp. 349–386). Springer.
Russo, M., & Senatore, L. J. (2022). Low-cost 3d techniques for real sculptural twins in the museum domain. 48(2/W1-2022), 229–236. Scopus. https://doi.org/10.5194/isprs-archives-XLVIII-2-W1-2022-229-2022
Tibaldeschi, G. (1996). La Chiesa di S. Maria Maggiore di Vercelli e l’Assunzione di Paolo Borroni. Bollettino Storico Vercellese, 2, 131–150.
Vanni, A., Fusco, R., Tesi, C., & Licata, M. (2024). Autopsy or anatomical dissection? Comparative analysis of an osteoarchaeological sample from an 18-19th century hypogeal cemetery (northern Italy). Journal of Archaeological Science: Reports, 54, 104418.
Weber, G. W. (2014). Another link between archaeology and anthropology: Virtual anthropology. Digital Applications in Archaeology and Cultural Heritage, 1(1), Article 1. Scopus. https://doi.org/10.1016/j.daach.2013.04.001
Williams, R., Thompson, T., Orr, C., & Taylor, G. (2024). Developing a 3D strategy: Pipelines and recommendations for 3D structured light scanning of archaeological artefacts. Digital Applications in Archaeology and Cultural Heritage, 33. Scopus. https://doi.org/10.1016/j.daach.2024.e00338
Zhou, Q.-Y., Park, J., & Koltun, V. (2018). Open3D: A Modern Library for 3D Data Processing. arXiv:1801.09847
Bastir, M., García-Martínez, D., Torres-Tamayo, N., Palancar, C. A., Fernández-Pérez, F. J., Riesco-López, A., Osborne-Márquez, P., Ávila, M., & López-Gallo, P. (2019). Workflows in a virtual morphology lab: 3D scanning, measuring, and printing. Journal of Anthropological Sciences, 97, 107–134. Scopus. https://doi.org/10.4436/jass.97003
Colosimo, B. M., Pacella, M., & Senin, N. (2015). Multisensor data fusion via Gaussian process models for dimensional and geometric verification. Precision Engineering, 40, 199–213. Scopus. https://doi.org/10.1016/j.precisioneng.2014.11.011
Denis, D. J. (2021). Applied univariate, bivariate, and multivariate statistics: Understanding statistics for social and natural scientists, with applications in SPSS and R. John Wiley & Sons.
Diara, F. (2023). Structured-Light Scanning and Metrological Analysis for Archaeology: Quality Assessment of Artec 3D Solutions for Cuneiform Tablets. Heritage, 6(9), Article 9. https://doi.org/10.3390/heritage6090317
Dickin, F., Pollard, S., & Adams, G. (2021). Mapping and correcting the distortion of 3D structured light scanners. Precision Engineering, 72, 543–555. https://doi.org/10.1016/j.precisioneng.2021.06.001
Eigen: Eigen::SelfAdjointEigenSolver< MatrixType_ > Class Template Reference. (n.d.). Retrieved 2 July 2024, from https://eigen.tuxfamily.org/dox/classEigen_1_1SelfAdjointEigenSolver.html
Ericson, C. (2004). Real-time collision detection. Crc Press.
Evgenikou, V., & Georgopoulos, A. (2015). Investigating 3D reconstruction methods for small artifacts. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-5/W4, 101–108. https://doi.org/10.5194/isprsarchives-XL-5-W4-101-2015
Fusco, R., Messina, C., Tesi, C., & Vanni, A. (2023). “Capta est ne malitia mutaret intelletum eius...”: Study on a natural mummy from an underground cemetery (18-19th century). Med. Hist., 7, e2023044.
Garashchenko, Y., Kogan, I., & Rucki, M. (2022). Comparative accuracy analysis of triangulated surface models of a fossil skull digitized with various optic devices. Metrology and Measurement Systems, 29(1), Article 1. Scopus. https://doi.org/10.24425/mms.2022.138547
Georgopoulos, A., Oikonomou, Ch., Adamopoulos, E., & Stathopoulou, E. K. (2016). Evaluating unmanned aerial platforms for cultural heritage large scale mapping. In Remondino F., 3D Optical Metrology FBK Trento via Sommarive 18, 38123, Trento, Rieke-Zapp D., Pavelka K., Hodac J., Shortis M., Halounova L., Rinaudo F., Boehm J., Safar V., & Scaioni M. (Eds.), Int. Arch. Photogramm., Remote Sens. Spat. Inf. Sci. - ISPRS Arch. (Vol. 41, pp. 355–362). International Society for Photogrammetry and Remote Sensing; Scopus. https://doi.org/10.5194/isprsarchives-XLI-B5-355-2016
Jacobs, L., Dvorak, J., Cornelius, A., Zameroski, R., No, T., & Schmitz, T. (2023). Structured light scanning artifact-based performance study. Manufacturing Letters, 35, 873–882. https://doi.org/10.1016/j.mfglet.2023.07.014
Kassambara, A. (2017). Practical guide to principal component methods in R: PCA, M (CA), FAMD, MFA, HCPC, factoextra (Vol. 2). Sthda.
Kusuma Frisky, A. Z., Fajri, A., Brenner, S., & Sablatnig, R. (2020). Acquisition evaluation on outdoor scanning for archaeological artifact digitalization. In Farinella G.M., Radeva P., & Braz J. (Eds.), VISIGRAPP - Proc. Int. Jt. Conf. Comput. Vis., Imaging Comput. Graph. Theory Appl. (Vol. 5, pp. 792–799). SciTePress; Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85083513105&partnerID=40&md5=b399b8a26b2de81633365079b216a3dd
labdig3a/osteo_labdig: Digiltal laboratory for osteological measuremnts. (n.d.). Retrieved 2 June 2024, from https://github.com/labdig3a/osteo_labdig
Lyu, W., Ke, W., Sheng, H., Ma, X., & Zhang, H. (2024). Dynamic Downsampling Algorithm for 3D Point Cloud Map Based on Voxel Filtering. Applied Sciences, 14(8), Article 8. https://doi.org/10.3390/app14083160
Maté-González, M. Á., Aramendi, J., González-Aguilera, D., & Yravedra, J. (2017). Statistical comparison between low-cost methods for 3D characterization of cut-marks on bones. Remote Sensing, 9(9), Article 9. Scopus. https://doi.org/10.3390/rs9090873
Menna, F., Nocerino, E., Remondino, F., Dellepiane, M., Callieri, M., & Scopigno, R. (2016). 3D Digitization of an heritage masterpiece—A critical analysis on quality assessment. 41, 675–683. Scopus. https://doi.org/10.5194/isprsarchives-XLI-B5-675-2016
Morena, S., Barba, S., & Álvaro-Tordesillas, A. (2019). Shining 3D EinScan-Pro, application and validation in the field of cultural heritage, from the Chillida-Leku museum to the archaeological museum of Sarno. 42(2/W18), 135–142. Scopus. https://doi.org/10.5194/isprs-archives-XLII-2-W18-135-2019
Open3D - Docs—Python API (geometry, point cloud). (n.d.). Retrieved 2 June 2024, from https://www.open3d.org/docs/latest/python_api/open3d.geometry.PointCloud.html
Open3D/cpp/open3d/geometry/BoundingVolume.cpp at main · isl-org/Open3D. (n.d.). GitHub. Retrieved 2 June 2024, from https://github.com/isl-org/Open3D/blob/main/cpp/open3d/geometry/BoundingVolume.cpp
Osteo_labdig/sources/cgui/cgui.py at master · labdig3a/osteo_labdig · GitHub. (n.d.). Retrieved 2 July 2024, from https://github.com/labdig3a/osteo_labdig/blob/master/sources/cgui/cgui.py#L156C1-L209C25
Plato. (n.d.). Phaedrus.
Rose, J. C., & Ungar, P. S. (1998). Gross dental wear and dental microwear in historical perspective. In Dental anthropology: Fundamentals, limits and prospects (pp. 349–386). Springer.
Russo, M., & Senatore, L. J. (2022). Low-cost 3d techniques for real sculptural twins in the museum domain. 48(2/W1-2022), 229–236. Scopus. https://doi.org/10.5194/isprs-archives-XLVIII-2-W1-2022-229-2022
Tibaldeschi, G. (1996). La Chiesa di S. Maria Maggiore di Vercelli e l’Assunzione di Paolo Borroni. Bollettino Storico Vercellese, 2, 131–150.
Vanni, A., Fusco, R., Tesi, C., & Licata, M. (2024). Autopsy or anatomical dissection? Comparative analysis of an osteoarchaeological sample from an 18-19th century hypogeal cemetery (northern Italy). Journal of Archaeological Science: Reports, 54, 104418.
Weber, G. W. (2014). Another link between archaeology and anthropology: Virtual anthropology. Digital Applications in Archaeology and Cultural Heritage, 1(1), Article 1. Scopus. https://doi.org/10.1016/j.daach.2013.04.001
Williams, R., Thompson, T., Orr, C., & Taylor, G. (2024). Developing a 3D strategy: Pipelines and recommendations for 3D structured light scanning of archaeological artefacts. Digital Applications in Archaeology and Cultural Heritage, 33. Scopus. https://doi.org/10.1016/j.daach.2024.e00338
Zhou, Q.-Y., Park, J., & Koltun, V. (2018). Open3D: A Modern Library for 3D Data Processing. arXiv:1801.09847