Bioinformatics Analysis Identifies Potential Diagnostic Biomarkers of Sarcoidosis

This is a preview and has not been published.

Bioinformatics Analysis Identifies Potential Diagnostic Biomarkers of Sarcoidosis

Authors

  • Linling Jin The First Affiliated Hospital with Nanjing Medical University
  • Chunfeng Pan The First Affiliated Hospital with Nanjing Medical University
  • Yujie Sun The First Affiliated Hospital with Nanjing Medical University
  • Jiayi Zhang The First Affiliated Hospital with Nanjing Medical University
  • Weiping Xie The First Affiliated Hospital with Nanjing Medical University
  • Mengyu He The First Affiliated Hospital with Nanjing Medical University

Keywords:

Sarcoidosis, Differentially expressed genes, Diagnostic markers, Immune infiltration

Abstract

Background and aim: Sarcoidosis is a complex inflammatory disorder characterized by the formation of non-caseating granulomas, which can affect multiple systems, with a predominant impact on the lungs and thoracic lymph nodes. The aim of the study is to identify potential diagnostic markers and explore the infiltration of immune cells associated with sarcoidosis.

Methods: The datasets of GSE19314, GSE83456, and GSE37912 were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were screened by comparing sarcoidosis samples to healthy controls in GSE19314 and GSE83456. Functional enrichment analyses and protein-protein interactions (PPIs) network construction were performed to elucidate the functional roles of the DEGs. Hub genes were identified through PPI network analysis. The GSE37912 dataset was used as validation set. Immune cell infiltration in patients diagnosed with sarcoidosis was investigated. Furthermore, the trehalose 6,6′-dimycolate-granuloma (TDM)-induced granuloma experimental model was employed to resemble human sarcoid granulomas, and the expression of hub genes in lung tissues was detected by qRT-PCR.

Results: A total of 71 common DEGs, including 53 upregulated DEGs and 18 downregulated DEGs, was identified between sarcoidosis individuals and controls. The genes signal transducer and activator of transcription 1 (STAT1), C-X-C motif chemokine ligand 10 (CXCL10) and basic leucine zipper ATF-like transcription factor 2 (BATF2) were considered hub genes and showed potential diagnostic capabilities of sarcoidosis. Immune infiltration analysis showed that compared with the control group, activated NK cells, monocytes, macrophage, activated dendritic cells and resting mast cell were higher infiltrated in sarcoidosis. In TDM-induced lung granuloma model, expression of STAT1, CXCL10 and BATF2 was increased in sarcoidosis lung tissue.

Conclusions: Bioinformatics analysis indicated that STAT1, CXCL10 and BATF2 may become new candidate biomarkers for sarcoidosis diagnosis.

References

1. Rossides M, Darlington P, Kullberg S, Arkema EV. Sarcoidosis: Epidemiology and clinical insights. J Intern Med. Jun 2023;293(6):668-680. doi:10.1111/joim.13629

2. Belperio JA, Shaikh F, Abtin FG, et al. Diagnosis and Treatment of Pulmonary Sarcoidosis: A Review. JAMA. Mar 1 2022;327(9):856-867. doi:10.1001/jama.2022.1570

3. Nunes H, Brillet PY, Bernaudin JF, Gille T, Valeyre D, Jeny F. Fibrotic Pulmonary Sarcoidosis. Clin Chest Med. Mar 2024;45(1):199-212. doi:10.1016/j.ccm.2023.08.011

4. Lee S, Birnie D, Dwivedi G. Current perspectives on the immunopathogenesis of sarcoidosis. Respir Med. Nov 2020;173:106161. doi:10.1016/j.rmed.2020.106161

5. Zhou ER, Arce S. Key Players and Biomarkers of the Adaptive Immune System in the Pathogenesis of Sarcoidosis. Int J Mol Sci. Oct 7 2020;21(19)doi:10.3390/ijms21197398

6. Newman AM, Steen CB, Liu CL, et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat Biotechnol. Jul 2019;37(7):773-782. doi:10.1038/s41587-019-0114-2

7. Koth LL, Solberg OD, Peng JC, Bhakta NR, Nguyen CP, Woodruff PG. Sarcoidosis blood transcriptome reflects lung inflammation and overlaps with tuberculosis. Am J Respir Crit Care Med. Nov 15 2011;184(10):1153-63. doi:10.1164/rccm.201106-1143OC

8. Su R, Li MM, Bhakta NR, et al. Longitudinal analysis of sarcoidosis blood transcriptomic signatures and disease outcomes. Eur Respir J. Oct 2014;44(4):985-93. doi:10.1183/09031936.00039714

9. Blankley S, Graham CM, Turner J, et al. The Transcriptional Signature of Active Tuberculosis Reflects Symptom Status in Extra-Pulmonary and Pulmonary Tuberculosis. PLoS One. 2016;11(10):e0162220. doi:10.1371/journal.pone.0162220

10. Zhou T, Zhang W, Sweiss NJ, et al. Peripheral blood gene expression as a novel genomic biomarker in complicated sarcoidosis. PLoS One. 2012;7(9):e44818. doi:10.1371/journal.pone.0044818

11. Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. Apr 20 2015;43(7):e47. doi:10.1093/nar/gkv007

12. Zhou Y, Zhou B, Pache L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. Apr 3 2019;10(1):1523. doi:10.1038/s41467-019-09234-6

13. Shen W, Song Z, Zhong X, et al. Sangerbox: A comprehensive, interaction-friendly clinical bioinformatics analysis platform. iMeta. 2022;1(3):e36. doi:https://doi.org/10.1002/imt2.36

14. Greaves SA, Atif SM, Fontenot AP. Adaptive Immunity in Pulmonary Sarcoidosis and Chronic Beryllium Disease. Front Immunol. 2020;11:474. doi:10.3389/fimmu.2020.00474

15. Brennan M, Breen D. Sarcoidosis in the older person: diagnostic challenges and treatment consideration. Age Ageing. Sep 2 2022;51(9)doi:10.1093/ageing/afac203

16. Facco M, Cabrelle A, Teramo A, et al. Sarcoidosis is a Th1/Th17 multisystem disorder. Thorax. Feb 2011;66(2):144-50. doi:10.1136/thx.2010.140319

17. Davis JM, Clay H, Lewis JL, Ghori N, Herbomel P, Ramakrishnan L. Real-time visualization of mycobacterium-macrophage interactions leading to initiation of granuloma formation in zebrafish embryos. Immunity. Dec 2002;17(6):693-702. doi:10.1016/s1074-7613(02)00475-2

18. Huppertz C, Jager B, Wieczorek G, et al. The NLRP3 inflammasome pathway is activated in sarcoidosis and involved in granuloma formation. Eur Respir J. Mar 2020;55(3)doi:10.1183/13993003.00119-2019

19. Locke LW, Crouser ED, White P, et al. IL-13-regulated Macrophage Polarization during Granuloma Formation in an In Vitro Human Sarcoidosis Model. Am J Respir Cell Mol Biol. Jan 2019;60(1):84-95. doi:10.1165/rcmb.2018-0053OC

20. Rastogi R, Du W, Ju D, et al. Dysregulation of p38 and MKP-1 in response to NOD1/TLR4 stimulation in sarcoid bronchoalveolar cells. Am J Respir Crit Care Med. Feb 15 2011;183(4):500-10. doi:10.1164/rccm.201005-0792OC

21. Kim YK, Shin JS, Nahm MH. NOD-Like Receptors in Infection, Immunity, and Diseases. Yonsei Med J. Jan 2016;57(1):5-14. doi:10.3349/ymj.2016.57.1.5

22. Rosenbaum JT, Pasadhika S, Crouser ED, et al. Hypothesis: sarcoidosis is a STAT1-mediated disease. Clin Immunol. Aug 2009;132(2):174-83. doi:10.1016/j.clim.2009.04.010

23. Kraaijvanger R, Janssen Bonas M, Vorselaars ADM, Veltkamp M. Biomarkers in the Diagnosis and Prognosis of Sarcoidosis: Current Use and Future Prospects. Front Immunol. 2020;11:1443. doi:10.3389/fimmu.2020.01443

24. Arger NK, Ho ME, Allen IE, Benn BS, Woodruff PG, Koth LL. CXCL9 and CXCL10 are differentially associated with systemic organ involvement and pulmonary disease severity in sarcoidosis. Respir Med. Jan 2020;161:105822. doi:10.1016/j.rmed.2019.105822

25. He J, Li X, Zhou J, Hu R. BATF2 and PDK4 as diagnostic molecular markers of sarcoidosis and their relationship with immune infiltration. Ann Transl Med. Jan 2022;10(2):106. doi:10.21037/atm-22-180

26. Roy S, Guler R, Parihar SP, et al. Batf2/Irf1 induces inflammatory responses in classically activated macrophages, lipopolysaccharides, and mycobacterial infection. J Immunol. Jun 15 2015;194(12):6035-44. doi:10.4049/jimmunol.1402521

27. van der Geest R, Penaloza HF, Xiong Z, et al. BATF2 enhances proinflammatory cytokine responses in macrophages and improves early host defense against pulmonary Klebsiella pneumoniae infection. Am J Physiol Lung Cell Mol Physiol. Nov 1 2023;325(5):L604-L616. doi:10.1152/ajplung.00441.2022

28. Li C, Liu M, Liu K, et al. BATF2 balances the T cell-mediated immune response of CADM with an anti-MDA5 autoantibody. Biochem Biophys Res Commun. Apr 30 2021;551:155-160. doi:10.1016/j.bbrc.2021.02.128

29. Baughman RP, Culver DA, Judson MA. A concise review of pulmonary sarcoidosis. Am J Respir Crit Care Med. Mar 1 2011;183(5):573-81. doi:10.1164/rccm.201006-0865CI

30. Wojtan P, Mierzejewski M, Osinska I, Domagala-Kulawik J. Macrophage polarization in interstitial lung diseases. Cent Eur J Immunol. 2016;41(2):159-64. doi:10.5114/ceji.2016.60990

31. Prokop S, Heppner FL, Goebel HH, Stenzel W. M2 polarized macrophages and giant cells contribute to myofibrosis in neuromuscular sarcoidosis. Am J Pathol. Mar 2011;178(3):1279-86. doi:10.1016/j.ajpath.2010.11.065

32. Manika K, Domvri K, Kyriazis G, Kontakiotis T, Papakosta D. BALF and BLOOD NK- cells in different stages of pulmonary sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis. 2022;38(4):e2021039. doi:10.36141/svdld.v38i4.10810

33. Lepzien R, Liu S, Czarnewski P, et al. Monocytes in sarcoidosis are potent tumour necrosis factor producers and predict disease outcome. Eur Respir J. Jul 2021;58(1)doi:10.1183/13993003.03468-2020

How to Cite

1.
Jin L, Pan C, Sun Y, Zhang J, Xie W, He M. Bioinformatics Analysis Identifies Potential Diagnostic Biomarkers of Sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis [Internet]. [cited 2025 Aug. 21];42(4):17074. Available from: https://mail.mattioli1885journals.com/index.php/sarcoidosis/article/view/17074

Issue

Section

Original Articles: Clinical Research

How to Cite

1.
Jin L, Pan C, Sun Y, Zhang J, Xie W, He M. Bioinformatics Analysis Identifies Potential Diagnostic Biomarkers of Sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis [Internet]. [cited 2025 Aug. 21];42(4):17074. Available from: https://mail.mattioli1885journals.com/index.php/sarcoidosis/article/view/17074