Bioinformatics analysis identifies candidate biomarkers associated with sarcoidosis

This is a preview and has not been published.

Bioinformatics analysis identifies candidate biomarkers associated with sarcoidosis

Authors

  • Linling Jin Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
  • Chunfeng Pan Department of Thoracic Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
  • Yujie Sun Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
  • Jiayi Zhang Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
  • Weiping Xie Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
  • Mengyu He Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China

Keywords:

Sarcoidosis, Differentially expressed genes, biomarkers, Immune infiltration

Abstract

Background and aim: Sarcoidosis is a complex inflammatory disorder characterized by the formation of non-caseating granulomas, which can affect multiple systems, with a predominant impact on the lungs and thoracic lymph nodes. The aim of the study is to identify potential biomarkers and explore the infiltration of immune cells associated with sarcoidosis. 

Methods: The datasets of GSE19314, GSE83456, and GSE37912 were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were screened by comparing sarcoidosis samples to healthy controls in GSE19314 and GSE83456. Functional enrichment analyses and protein-protein interactions (PPIs) network construction were performed to elucidate the functional roles of the DEGs. Hub genes were identified through PPI network analysis. The GSE37912 dataset was used as a validation set. Immune cell infiltration in sarcoidosis patients was investigated. Furthermore, the trehalose 6,6′-dimycolate-granuloma (TDM)-induced granuloma experimental model was employed to resemble human sarcoid granulomas, and the expression of hub genes in lung tissues was detected by qRT-PCR.

Results: A total of 71 common DEGs, including 53 upregulated DEGs and 18 downregulated DEGs, were identified between sarcoidosis patients and controls. The signal transducer and activator of transcription 1 (STAT1), C-X-C motif chemokine ligand 10 (CXCL10) and basic leucine zipper ATF-like transcription factor 2 (BATF2) were considered as hub genes, showing promising diagnostic potential for sarcoidosis. Immune infiltration analysis indicated that compared with the controls, sarcoidosis samples exhibited increased infiltration of activated NK cells, monocytes, macrophage, activated dendritic cells and resting mast cells. In the TDM-induced lung granuloma model, STAT1, CXCL10 and BATF2 expression was upregulated in sarcoidosis lung tissue.

Conclusions: Bioinformatics analysis indicated that STAT1, CXCL10 and BATF2 may as candidate biomarkers associated with sarcoidosis.

References

1. Rossides M, Darlington P, Kullberg S, Arkema EV. Sarcoidosis: epidemiology and clinical insights. J Intern Med. 2023;293(6):668–80. doi:10.1111/joim.13629

2. Vij O, Dey M, Morrison K, Kouranloo K. Incidence, management and prognosis of new-onset sarcoidosis post COVID-19 infection. Sarcoidosis Vasc Diffuse Lung Dis. 2024;41(1):e2024004. doi:10.36141/svdld.v41i1.15027

3. Belperio JA, Shaikh F, Abtin FG, et al. Diagnosis and treatment of pulmonary sarcoidosis: a review. JAMA. 2022;327(9):856–67. doi:10.1001/jama.2022.1570

4. Nunes H, Brillet PY, Bernaudin JF, Gille T, Valeyre D, Jeny F. Fibrotic pulmonary sarcoidosis. Clin Chest Med. 2024;45(1):199–212. doi:10.1016/j.ccm.2023.08.011

5. Lee S, Birnie D, Dwivedi G. Current perspectives on the immunopathogenesis of sarcoidosis. Respir Med. 2020;173:106161. doi:10.1016/j.rmed.2020.106161

6. Drent M, Crouser ED, Grunewald J. Challenges of sarcoidosis and its management. N Engl J Med. 2021;385(11):1018–32. doi:10.1056/NEJMra2101555

7. Bergantini L, Cameli P, d’Alessandro M, et al. NK and NKT-like cells in granulomatous and fibrotic lung diseases. Clin Exp Med. 2019;19(4):487–94. doi:10.1007/s10238-019-00578-3

8. Newman AM, Steen CB, Liu CL, et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat Biotechnol. 2019;37(7):773–82. doi:10.1038/s41587-019-0114-2

9. Koth LL, Solberg OD, Peng JC, Bhakta NR, Nguyen CP, Woodruff PG. Sarcoidosis blood transcriptome reflects lung inflammation and overlaps with tuberculosis. Am J Respir Crit Care Med. 2011;184(10):1153–63. doi:10.1164/rccm.201106-1143OC

10. Su R, Li MM, Bhakta NR, et al. Longitudinal analysis of sarcoidosis blood transcriptomic signatures and disease outcomes. Eur Respir J. 2014;44(4):985–93. doi:10.1183/09031936.00039714

11. Blankley S, Graham CM, Turner J, et al. The transcriptional signature of active tuberculosis reflects symptom status in extra-pulmonary and pulmonary tuberculosis. PLoS One. 2016;11(10):e0162220. doi:10.1371/journal.pone.0162220

12. Zhou T, Zhang W, Sweiss NJ, et al. Peripheral blood gene expression as a novel genomic biomarker in complicated sarcoidosis. PLoS One. 2012;7(9):e44818. doi:10.1371/journal.pone.0044818

13. Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47. doi:10.1093/nar/gkv007

14. Zhou Y, Zhou B, Pache L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10(1):1523. doi:10.1038/s41467-019-09234-6

15. Shen W, Song Z, Zhong X, et al. Sangerbox: a comprehensive, interaction-friendly clinical bioinformatics analysis platform. iMeta. 2022;1(3):e36. doi:10.1002/imt2.36

16. Greaves SA, Atif SM, Fontenot AP. Adaptive immunity in pulmonary sarcoidosis and chronic beryllium disease. Front Immunol. 2020;11:474. doi:10.3389/fimmu.2020.00474

17. Brennan M, Breen D. Sarcoidosis in the older person: diagnostic challenges and treatment consideration. Age Ageing. 2022;51(9):afac203. doi:10.1093/ageing/afac203

18. Facco M, Cabrelle A, Teramo A, et al. Sarcoidosis is a Th1/Th17 multisystem disorder. Thorax. 2011;66(2):144–50. doi:10.1136/thx.2010.140319

19. Davis JM, Clay H, Lewis JL, Ghori N, Herbomel P, Ramakrishnan L. Real-time visualization of mycobacterium-macrophage interactions leading to initiation of granuloma formation in zebrafish embryos. Immunity. 2002;17(6):693–702. doi:10.1016/s1074-7613(02)00475-2

20. Huppertz C, Jager B, Wieczorek G, et al. The NLRP3 inflammasome pathway is activated in sarcoidosis and involved in granuloma formation. Eur Respir J. 2020;55(3):00119-2019. doi:10.1183/13993003.00119-2019

21. Locke LW, Crouser ED, White P, et al. IL-13-regulated macrophage polarization during granuloma formation in an in vitro human sarcoidosis model. Am J Respir Cell Mol Biol. 2019;60(1):84–95. doi:10.1165/rcmb.2018-0053OC

22. Rastogi R, Du W, Ju D, et al. Dysregulation of p38 and MKP-1 in response to NOD1/TLR4 stimulation in sarcoid bronchoalveolar cells. Am J Respir Crit Care Med. 2011;183(4):500–10. doi:10.1164/rccm.201005-0792OC

23. Kim YK, Shin JS, Nahm MH. NOD-like receptors in infection, immunity, and diseases. Yonsei Med J. 2016;57(1):5–14. doi:10.3349/ymj.2016.57.1.5

24. Rosenbaum JT, Pasadhika S, Crouser ED, et al. Hypothesis: sarcoidosis is a STAT1-mediated disease. Clin Immunol. 2009;132(2):174–83. doi:10.1016/j.clim.2009.04.010

25. Kraaijvanger R, Janssen Bonas M, Vorselaars ADM, Veltkamp M. Biomarkers in the diagnosis and prognosis of sarcoidosis: current use and future prospects. Front Immunol. 2020;11:1443. doi:10.3389/fimmu.2020.01443

26. Arger NK, Ho ME, Allen IE, Benn BS, Woodruff PG, Koth LL. CXCL9 and CXCL10 are differentially associated with systemic organ involvement and pulmonary disease severity in sarcoidosis. Respir Med. 2020;161:105822. doi:10.1016/j.rmed.2019.105822

27. He J, Li X, Zhou J, Hu R. BATF2 and PDK4 as diagnostic molecular markers of sarcoidosis and their relationship with immune infiltration. Ann Transl Med. 2022;10(2):106. doi:10.21037/atm-22-180

28. Roy S, Guler R, Parihar SP, et al. Batf2/Irf1 induces inflammatory responses in classically activated macrophages, lipopolysaccharides, and mycobacterial infection. J Immunol. 2015;194(12):6035–44. doi:10.4049/jimmunol.1402521

29. van der Geest R, Penaloza HF, Xiong Z, et al. BATF2 enhances proinflammatory cytokine responses in macrophages and improves early host defense against pulmonary Klebsiella pneumoniae infection. Am J Physiol Lung Cell Mol Physiol. 2023;325(5):L604–16. doi:10.1152/ajplung.00441.2022

30. Li C, Liu M, Liu K, et al. BATF2 balances the T cell-mediated immune response of CADM with an anti-MDA5 autoantibody. Biochem Biophys Res Commun. 2021;551:155–60. doi:10.1016/j.bbrc.2021.02.128

31. Baughman RP, Culver DA, Judson MA. A concise review of pulmonary sarcoidosis. Am J Respir Crit Care Med. 2011;183(5):573–81. doi:10.1164/rccm.201006-0865CI

32. Wojtan P, Mierzejewski M, Osinska I, Domagala-Kulawik J. Macrophage polarization in interstitial lung diseases. Cent Eur J Immunol. 2016;41(2):159–64. doi:10.5114/ceji.2016.60990

33. Prokop S, Heppner FL, Goebel HH, Stenzel W. M2 polarized macrophages and giant cells contribute to myofibrosis in neuromuscular sarcoidosis. Am J Pathol. 2011;178(3):1279–86. doi:10.1016/j.ajpath.2010.11.065

34. Manika K, Domvri K, Kyriazis G, Kontakiotis T, Papakosta D. BALF and blood NK cells in different stages of pulmonary sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis. 2022;38(4):e2021039. doi:10.36141/svdld.v38i4.10810

35. Lepzien R, Liu S, Czarnewski P, et al. Monocytes in sarcoidosis are potent tumour necrosis factor producers and predict disease outcome. Eur Respir J. 2021;58(1):03468-2020. doi:10.1183/13993003.03468-2020

Downloads

How to Cite

1.
Jin L, Pan C, Sun Y, Zhang J, Xie W, He M. Bioinformatics analysis identifies candidate biomarkers associated with sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis [Internet]. [cited 2025 Dec. 7];42(4):17074. Available from: https://mail.mattioli1885journals.com/index.php/sarcoidosis/article/view/17074

Issue

Section

Original Articles: Clinical Research

How to Cite

1.
Jin L, Pan C, Sun Y, Zhang J, Xie W, He M. Bioinformatics analysis identifies candidate biomarkers associated with sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis [Internet]. [cited 2025 Dec. 7];42(4):17074. Available from: https://mail.mattioli1885journals.com/index.php/sarcoidosis/article/view/17074