Particles exposures and sarcoidosis
Keywords:
Sar, Granuloma, Foreign bodies, Silica, Metals, Particulate matterAbstract
Background: Sarcoidosis is a chronic disease characterized by the formation of non-caseating granulomas with the lung being the most frequently involved organ. The current diagnosis of sarcoidosis requires that the etiology be idiopathic with alternative causes of granulomatous disease excluded. The assessment that sarcoidosis has no known cause has been challenged by numerous case reports, case series, and epidemiologic studies supporting associations of this disease with recognized exposures to particles.
Objective: The literature is reviewed to test for an association between particle exposures and a diagnosis of pulmonary sarcoidosis.
Methods: A systematic review of the literature was performed using PubMed/MEDLINE, Web of Science, and TOXNET.
Results: Particles can impact a development of granulomas comparable or identical to those in sarcoidosis patients. Prominent among these particles which participate in a pathogenesis of sarcoidosis are silicas and silicates, metals and metal oxides, and World Trade Center dust.
Conclusions: Particle exposure is frequently associated with pulmonary sarcoidosis and should not preclude the diagnosis.
References
1. Crouser ED, Maier LA, Wilson KC, et al. Diagnosis and Detection of Sarcoidosis. An Official American Thoracic Society Clinical Practice Guideline. Am J Respir Crit Care Med 2020; 201:e26-e51. doi: 10.1164/rccm.202002-0251ST
2. Singha A, Liao SY, Herman DD, et al. Summary for Clinicians: Clinical Practice Guideline for the Diagnosis and Detection of Sarcoidosis. Ann Am Thorac Soc 2020; 17:1510-1515. doi: 10.1513/AnnalsATS.202007-874CME
3. Ryu JH, Daniels CE, Hartman TE, et al. Diagnosis of interstitial lung diseases. Mayo Clin Proc 2007; 82:976-86. doi: 10.4065/82.8.976
4. Chen ES, Moller DR. Etiologies of Sarcoidosis. Clin Rev Allergy Immunol 2015; 49:6-18. doi: 10.1007/s12016-015-8481-z
5. Rossman MD, Thompson B, Frederick M, et al. HLA and environmental interactions in sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis 2008; 25:125-132. PMID: 19382531
6. Cleven KL, Ye K, Zeig-Owens R, et al. Genetic Variants Associated with FDNY WTC-Related Sarcoidosis. Int J Environ Res Public Health 2019; 16:1830. doi: 10.3390/ijerph16101830.
7. Judson MA. Environmental Risk Factors for Sarcoidosis. Frontiers Immunol 2020; 11 1340. doi: 10.3389/fimmu.2020.01340
8. Nair N, Patrick H, Narula J. Particulate matter granulomas masquerading as sarcoidosis: a diagnostic dilemma. Biomol Concepts 2015; 6:229-233. doi: 10.1515/bmc-2015-0010
9. Tchernev G, Tana C, Schiavone C, et al. Sarcoidosis vs. Sarcoid-like reactions: The Two Sides of the same Coin? Wien Med Wochenschr 2014; 164:247-259. doi: 10.1007/s10354-014-0269-x
10. Vincent M, Lievre M. [Sarcoidosis and pulmonary dust exposure, a plausible pathogenic link]. Rev Mal Respir 2002; 19:103-104. PMID: 17546823
11. Oliver LC, Sampara P, Pearson D, et al. Sarcoidosis in Northern Ontario hard-rock miners: A case series. Am J Ind Med 2022; 65:268-280. PMID: 35156713
12. Newman KL, Newman LS. Occupational causes of sarcoidosis. Curr Opin Allergy Clin Immunol 2012; 12:145-150. doi: 10.1097/ACI.0b013e3283515173
13. Graff P, Larsson J, Bryngelsson IL, et al. Sarcoidosis and silica dust exposure among men in Sweden: a case-control study. BMJ Open 2020; 10:e038926.doi: 10.1136/bmjopen-2020-038926.
14. Kawano-Dourado LB, Carvalho CRR, Santos UP, et al. Tunnel excavation triggering pulmonary sarcoidosis. Am J Ind Med 2012; 55:390-394. doi: 10.1002/ajim.21030
15. Newman LS, Rose CS, Bresnitz EA, et al. A case control etiologic study of sarcoidosis: environmental and occupational risk factors. Am J Respir Crit Care Med 2004; 170:1324-1330. doi: 10.1164/rccm.200402-249OC
16. Deubelbeiss U, Gemperli A, Schindler C, et al. Prevalence of sarcoidosis in Switzerland is associated with environmental factors. Eur Respir J 2010; 35: 1088-1097. doi: 10.1183/09031936.00197808
17. Levin AM, She R, Chen Y, et al. Identification of Environmental Exposures Associated with Risk of Sarcoidosis in African Americans. Ann Am Thorac Soc 2023; 20:1274-1282. doi: 10.1513/AnnalsATS.202208-722OC
18. Ramos-Casals M, Kostov B, Brito-Zeron P, et al. How the Frequency and Phenotype of Sarcoidosis is Driven by Environmental Determinants. Lung 2019; 197:427-436. doi: 10.1007/s00408-019-00243-2
19. Ronsmans S, De Ridder J, Vandebroek E, et al. Associations between occupational and environmental exposures and organ involvement in sarcoidosis: a retrospective case-case analysis. Respir Res 2021; 22:224. doi: 10.1186/s12931-021-01818-5
20. Centers for Disease Control and Prevention. Sarcoidosis among U.S. Navy enlisted men, 1965-1993. MMWR Morb Mortal Wkly Rep 1997; 46:539-543. PMID: 9191037
21. Jajosky P. Sarcoidosis diagnoses among US military personnel: Trends and ship assignment associations. Am J Prev Med 1998; 14:176-183. doi: 10.1016/s0749-3797(97)00063-9
22. Axelrod BN, Milner IB. Gulf War illness research: separating the wheat from the chaff. Clin Neuropsychol 2000; 14:344-348. doi: 10.1076/1385-4046(200008)14:3;1-P;FT344
23. Gorham ED, Garland CF, Garland FC, et al. Trends and occupational associations in incidence of hospitalized pulmonary sarcoidosis and other lung diseases in Navy personnel: a 27-year historical prospective study, 1975-2001. Chest 2004; 126:1431-1438. doi: 10.1378/chest.126.5.1431
24. Prezant DJ, Dhala A, Goldstein A, et al. The incidence, prevalence, and severity of sarcoidosis in New York City firefighters. Chest 1999; 116:1183-1193. doi: 10.1378/chest.116.5.1183
25. Crawford JO, Graveling RA. Non-cancer occupational health risks in firefighters. Occup Med (Lond) 2012; 62:485-495. doi: 10.1093/occmed/kqs116
26. Liu HB, Patel D, Welch AM, et al. Association Between Occupational Exposures and Sarcoidosis An Analysis From Death Certificates in the United States, 1988-1999. Chest 2016; 150: 289-298. doi: 10.1016/j.chest.2016.01.020
27. Barnard J, Rose C, Newman L, et al. Job and industry classifications associated with sarcoidosis in A Case-Control Etiologic Study of Sarcoidosis (ACCESS). J Occup Environ Med 2005; 47:226-234. doi: 10.1097/01.jom.0000155711.88781.91
28. Parkes SA, Baker SB, Bourdillon RE, et al. Epidemiology of sarcoidosis in the Isle of Man--1: A case controlled study. Thorax 1987; 42:420-426. doi: 10.1136/thx.42.6.420
29. Edmondstone WM. Sarcoidosis in nurses: is there an association? Thorax 1988; 43:342-343. doi: 10.1136/thx.43.4.342
30. Mayer AS, Hamzeh N, Maier LA. Sarcoidosis and chronic beryllium disease: similarities and differences. Semin Respir Crit Care Med 2014; 35:316-329. doi: 10.1055/s-0034-1377059
31. Nathan N, Montagne ME, Macchi O, et al. Exposure to inorganic particles in paediatric sarcoidosis: the PEDIASARC study. Thorax 2022; 77:404-407. doi: 10.1136/thoraxjnl-2021-217870
32. Blanc PD, Annesi-Maesano I, Balmes JR, et al. The Occupational Burden of Nonmalignant Respiratory Diseases. An Official American Thoracic Society and European Respiratory Society Statement. Am J Respir Crit Care Med 2019; 199:1312-1334. doi: 10.1164/rccm.201904-0717ST
33. Cortezpimental J, Peixotomenezes A. Pulmonary and Hepatic Granulomatous Disorders Due to Inhalation of Cement and Mica Dusts. Thorax 1978; 33:219-227. doi: 10.1136/thx.33.2.219
34. Bodokh I, Brun P, Mayaffre C, et al. [Cutaneous sarcoidosis secondary to inhalation of wall insulating material particles]. Ann Dermatol Venereol 1998; 125:182-184. PMID: 9747244
35. Sola R, Boj M, Hernandez-Flix S, Camprubi M. Silica in oral drugs as a possible sarcoidosis-inducing antigen. Lancet 2009; 373:1943-1944. doi: 10.1016/S0140-6736(09)61057-6
36. Uzkeser H, Karatay S, Yildirim K, et al. Sarcoidosis and denim sandblasting: a case report. Turkish Journal of Medical Sciences 2013; 43:343-345. doi: 10.3906/saq-1207-92
37. Uzmezoglu B, Simsek C, Gulgosteren S, et al. Sarcoidosis in iron-steel industry: mini case series. Sarcoidosis Vasc Diffuse Lung Dis 2017; 34:365-372. doi: 10.36141/svdld.v34i4.6185
38. Beijer E, Meek B, Kromhout H, et al. Sarcoidosis in a patient clinically diagnosed with silicosis; is silica associated sarcoidosis a new phenotype? Respir Med Case Rep 2019; 28: 100906. doi: 10.1016/j.rmcr.2019.100906
39. Guarnieri G, Bizzotto R, Gottardo O, et al. Multiorgan accelerated silicosis misdiagnosed as sarcoidosis in two workers exposed to quartz conglomerate dust. Occup Environ Med 2019; 76:178-180. doi: 10.1136/oemed-2018-105462
40. Baur X, Sanyal S, Abraham JL. Mixed-dust pneumoconiosis: Review of diagnostic and classification problems with presentation of a work-related case. Sci Total Environ 2019; 652: 413-421. doi: 10.1016/j.scitotenv.2018.10.083
41. Ronsmans S, Verbeken EK, Adams E, et al. Granulomatous lung disease in two workers making light bulbs. Am J Ind Med 2019; 62: 908-913. doi: 10.1002/ajim.23030
42. Mochizuka Y, Kono M, Katsumata M, et al. Sarcoid-like Granulomatous Lung Disease with Subacute Progression in Silicosis. Intern Med 2022; 61: 395-400. doi: 10.2169/internalmedicine
43. Rafnsson V, Ingimarsson O, Hjalmarsson I, et al. Association between exposure to crystalline silica and risk of sarcoidosis. Occup Environ Med 1998; 55: 657-660. doi: 10.1136/oem.55.10.657. PMID: 9930085
44. Liu HG, Zhong ZJ, Yue CL, et al. Dust particles mainly containing silicon found in granulomas cells of sarcoidosis. IAP 2005: Proceedings of the 4th Asia-Pacific International Academy of Pathology Congress 2005: 279-283.
45. Vihlborg P, Bryngelsson IL, Andersson L, et al. Risk of sarcoidosis and seropositive rheumatoid arthritis from occupational silica exposure in Swedish iron foundries: a retrospective cohort study. BMJ Open 2017; 7: e016839. doi: 10.1136/bmjopen-2017-016839
46. Jonsson E, Jarvholm B, Andersson M. Silica dust and sarcoidosis in Swedish construction workers. Occup Med (Lond) 2019; 69: 482-486. doi: 10.1093/occmed/kqz118
47. Iversen IB, Vestergaard JM, Ohlander J, et al. Occupational exposure to respirable crystalline silica and incident idiopathic interstitial pneumonias and pulmonary sarcoidosis: a national prospective follow-up study. Occup Environ Med. 2024; 81:279-286. doi: 10.1136/oemed-2023-108964
48. Tukiainen P, Nickels J, Taskinen E, et al. Pulmonary granulomatous reaction: talc pneumoconiosis or chronic sarcoidosis? Br J Ind Med 1984; 41: 84-87. doi: 10.1136/oem.41.1.84
49. Gysbrechts C, Michiels E, Verbeken E, et al. Interstitial lung disease more than 40 years after a 5 year occupational exposure to talc. Eur Respir J 1998; 11: 1412-1415. doi: 10.1183/09031936.98
50. Vincent M, Chemarin C, Peyrol S, et al. [Use of talc and sarcoidosis - pathogenic role of cutaneous talc exposure in sarcoidosis]. Rev Mal Respir 2004; 21: 811-814. doi: 10.1016/s0761-8425(04)71424-2
51. Iqbal A, Aggarwal B, Menon B, et al. Talc granulomatosis mimicking sarcoidosis. Singapore Med J 2008; 49: e168-170. PMID: 18695849
52. Van Treeck BJ, Gehlbach DA, Foster GH, et al. A 52-Year-Old Woman With an Abdominal Mass, Bilateral Pulmonary Nodules, and Mediastinal and Hilar Lymphadenopathy. Chest 2019; 155: e175-e178. doi: 10.1016/j.chest.2019.01.017
53. Tayot J, Henin-Landes D, Fondimare A, et al. [Asbestosis with sarcoid-like pulmonary lesions. A propos of one anatomoclinical case report]. Ann Anat Pathol (Paris) 1976; 21: 269-276. PMID: 970691
54. Kido M, Kajiki A, Hiraoka K, et al. Sarcoid reaction observed in a worker with a history of asbestos exposure. J UOEH 1990; 12: 355-360. doi: 10.7888/juoeh.12.355
55. Granel B, Serratrice J, Disdier P, et al. Sarcoid-like pulmonary lesions during asbestosis. A case report. Sarcoidosis Vasc Diffuse Lung Dis 2000; 17:297. PMID: 11033848
56. Seedahmed MI, Baugh AD, Albirair MT, et al. Epidemiology of Sarcoidosis in U.S. Veterans from 2003 to 2019. Ann Am Thorac Soc 2023; 20: 797-806. doi: 10.1513/AnnalsATS.202206-515OC
57. Schweitzer MD, Calzadilla AS, Salamo O, et al. Lung health in era of climate change and dust storms. Environ Res 2018; 163: 36-42. doi: 10.1016/j.envres.2018.02.001
58. Jani N, Christie IC, Wu TD, et al. Factors associated with a diagnosis of sarcoidosis among US veterans of Iraq and Afghanistan. Sci Rep 2022; 12: 22045. doi: 10.1038/s41598-022-24853-8
59. Lowers H, Zell-Baran L, Arslan Z, et al Particle Morphology and Elemental Analysis of Lung Tissue from Post-9/11 Military Personnel with Biopsy-Proven Lung Disease. Int J Environ Res Public Health. 2024;21:91. doi: 10.3390/ijerph21010091
60. Drent M, Bomans PH, Van Suylen RJ, et al. Association of man-made mineral fibre exposure and sarcoidlike granulomas. Respir Med 2000; 94: 815-820. doi: 10.1053/rmed.2000.0827
61. Newman LS. Beryllium disease and sarcoidosis: clinical and laboratory links. Sarcoidosis 1995; 12: 7-19. PMID: 7617981
62. Redline S, Barna BP, Tomashefski JF, Jr., et al. Granulomatous disease associated with pulmonary deposition of titanium. Br J Ind Med 1986; 43: 652-656. doi: 10.1136/oem.43.10.652
63. De Vuyst P, Dumortier P, Schandene L, et al. Sarcoidlike lung granulomatosis induced by aluminum dusts. Am Rev Respir Dis 1987; 135: 493-497. doi: 10.1164/arrd.1987.135.2.493
64. Humble S, Tucker JA, Boudreaux C, et al. Titanium particles identified by energy-dispersive X-ray microanalysis within the lungs of a painter at autopsy. Ultrastruct Pathol 2003; 27: 127-129. doi: 10.1080/01913120309925
65. Catinon M, Chemarin C, Assaad S, et al. Wire brushing wood furniture, granulomatosis and microscopic mineralogical analysis. Sarcoidosis Vasc Diffuse Lung Dis 2014; 31: 262-264. PMID: 25363230
66. Newman LS. Metals that cause sarcoidosis. Semin Respir Infect 1998; 13: 212-220. PMID: 9764952
67. Williams WJ. Beryllium workers--sarcoidosis or chronic beryllium disease. Sarcoidosis 1989; 6 Suppl 1: 34-35. PMID: 2623376
68. Laczniak AN, Gross NA, Fuortes LJ, et al. Unsuspected exposure to beryllium: potential implications for sarcoidosis diagnoses. Sarcoidosis Vasc Diffuse Lung Dis 2014; 31: 163-169. PMID: 25078645
69. Sood A, Beckett WS, Cullen MR. Variable response to long-term corticosteroid therapy in chronic beryllium disease. Chest 2004; 126: 2000-2007. doi: 10.1378/chest.126.6.2000
70. Chen WJ, Monnat RJ, Jr., Chen M, et al. Aluminum induced pulmonary granulomatosis. Hum Pathol 1978; 9: 705-711. doi: 10.1016/s0046-8177(78)80053-7
71. Fireman E, Goshen M, Ganor E, et al. Induced sputum as an additional tool in the identification of metal-induced sarcoid-like reaction. Sarcoidosis Vasc and Diffuse Lung Dis 2004; 21: 152-156. PMID: 15281437
72. Cai HR, Cao M, Meng FQ, et al. Pulmonary sarcoid-like granulomatosis induced by aluminum dust: report of a case and literature review. Chin Med J (Engl) 2007; 120: 1556-1560. PMID: 17908469
73. Tomioka H, Kaneda T, Katsuyama E, et al. Elemental analysis of occupational granulomatous lung disease by electron probe microanalyzer with wavelength dispersive spectrometer: Two case reports. Respir Med Case Rep 2016; 18: 66-72. doi: 10.1016/j.rmcr.2016.04.009
74. Catinon M, Chemarin C, Roux E, et al. Polishing surgical metal pieces, granulomatosis and mineralogical analysis. Sarcoidosis Vasc Diffuse Lung Dis 2016; 33: 166-170. PMID: 27537720
75. Hayashi F, Kido T, Sakamoto N, et al. Pneumoconiosis with a Sarcoid-Like Reaction Other than Beryllium Exposure: A Case Report and Literature Review. Medicina (Kaunas) 2020; 56:630. doi: 10.3390/medicina56110630.
76. Blin T, De Muret A, Teulier M, et al. Desquamative interstitial pneumonia induced by metal exposure. A case report and literature review. Sarcoidosis Vasc Diffuse Lung Dis 2020; 37: 79-84. doi: 10.36141/svdld.v37i1.9103
77. Du X, Song L, Feng R, et al. Pulmonary sarcoid-like granulomatosis induced by aluminum dust: A case report and literature review. Front Med (Lausanne) 2023; 10: 1085716. doi: 10.3389/fmed.2023.1085716
78. Kucera GP, Rybicki BA, Kirkey KL, et al. Occupational risk factors for sarcoidosis in African-American siblings. Chest 2003; 123: 1527-1535. doi: 10.1378/chest.123.5.1527
79. Fireman E, Shai AB, Alcalay Y, et al. Identification of metal sensitization in sarcoid-like metal-exposed patients by the MELISA(R) lymphocyte proliferation test - a pilot study. J Occup Med Toxicol 2016; 11: 18. doi: 10.1186/s12995-016-0101-1
80. Beijer E, Meek B, Bossuyt X, et al. Immunoreactivity to metal and silica associates with sarcoidosis in Dutch patients. Respir Res 2020; 21: 141. doi: 10.1186/s12931-020-01409-w
81. Catinon M, Cavalin C, Chemarin C, et al. Sarcoidosis, inorganic dust exposure and content of bronchoalveolar lavage fluid: the MINASARC pilot study. Sarcoidosis Vasc Diffuse Lung Dis 2018; 35: 327-332. doi: 10.36141/svdld.v35i4.7058
82. Kotter JM, Zieger G. [Sarcoid granulomatosis after many years of exposure to zirconium, "zirconium lung"]. Pathologe 1992; 13: 104-109. PMID: 1603771
83. Romeo L, Cazzadori A, Bontempini L, et al. Interstitial lung granulomas as a possible consequence of exposure to zirconium dust. Med Lav 1994; 85: 219-222. PMID: 7935143
84. Werfel U, Schneider J, Rodelsperger K, et al. Sarcoid granulomatosis after zirconium exposure with multiple organ involvement. Eur Respir J 1998; 12: 750. doi: 10.1183/09031936.98.12030750
85. Brancaleone P, Weynand B, De Vuyst P, et al. Lung granulomatosis in a dental technician. Am J Ind Med 1998; 34: 628-631. doi: 10.1002/(sici)1097-0274(199812)34:6<628::aid-ajim12>3.0.co;2-9
86. Checchi L, Nucci MC, Gatti AM, et al. Sarcoidosis in a dental surgeon: a case report. J Med Case Rep 2010; 4: 259. doi: 10.1186/1752-1947-4-259
87. Bourlier D, O'Connell C, Montani D, et al. A rare case of sarcoidosis-associated pulmonary hypertension in a patient exposed to silica. Eur Respir Rev 2016; 25: 93-96. doi: 10.1183/16000617.0073-2015
88. Fireman E, Haimsky E, Noiderfer M, et al. Misdiagnosis of sarcoidosis in patients with chronic beryllium disease. Sarcoidosis Vasc Diffuse Lung Dis 2003; 20: 144-148. PMID: 12870725
89. Frye BC, Quartucci C, Rakete S, et al. A Cluster of Beryllium Sensitization Traced to the Presence of Beryllium in Concrete Dust. Chest 2021; 159: 1084-1093. doi: 10.1016/j.chest.2020.09.073
90. Beijer E, Kraaijvanger R, Roodenburg C, et al. Simultaneous testing of immunological sensitization to multiple antigens in sarcoidosis reveals an association with inorganic antigens specifically related to a fibrotic phenotype. Clin Exp Immunol 2021; 203: 115-124. doi: 10.1111/cei.13519
91. Lioy PJ, Weisel CP, Millette JR, et al. Characterization of the dust/smoke aerosol that settled east of the World Trade Center (WTC) in Lower Manhattan after the collapse of the WTC 11 September 2001. Environ Health Perspect 2002; 110: 703-714. doi: 10.1289/ehp.02110703
92. Izbicki G, Chavko R, Banauch GI, et al. World Trade Center "sarcoid-like" granulomatous pulmonary disease in New York City Fire Department rescue workers. Chest 2007; 131: 1414-1423. doi: 10.1378/chest.06-2114
93. McGee JK, Chen LC, Cohen MD, et al. Chemical analysis of World Trade Center fine particulate matter for use in toxicologic assessment. Environ Health Perspect 2003; 111: 972-980. doi: 10.1289/ehp.5930.
94. Guidotti TL, Prezant D, de la Hoz RE, et al. The Evolving Spectrum of Pulmonary Disease in Responders to the World Trade Center Tragedy. Am J Ind Med 2011; 54: 649-660. doi: 10.1002/ajim.20987
95. Lippmann M, Cohen MD, Chen LC. Health effects of World Trade Center (WTC) Dust: An unprecedented disaster's inadequate risk management. Crit Rev Toxicol 2015; 45: 492-530. doi: 10.3109/10408444.2015.1044601
96. Crowley LE, Herbert R, Moline JM, et al. "Sarcoid like" granulomatous pulmonary disease in World Trade Center disaster responders. Am J Ind Med 2011; 54: 175-184. doi: 10.1002/ajim.20924
97. Reich JM. Sarcoidosis in World Trade Center-Exposed Firefighters. Chest. 2018; 153:1072-1073. doi: 10.1016/j.chest.2017.11.045
98. Caplan-Shaw CE, Yee H, Rogers L, et al. Lung pathologic findings in a local residential and working community exposed to World Trade Center dust, gas, and fumes. J Occup Environ Med 2011; 53: 981-991. doi: 10.1097/JOM.0b013e31822fff60
99. Hena KM, Yip J, Jaber N, et al. Clinical Course of Sarcoidosis in World Trade Center-Exposed Firefighters. Chest 2018; 153: 114-123. doi: 10.1016/j.chest.2017.10.014
100. Jordan HT, Stellman SD, Prezant D, et al. Sarcoidosis Diagnosed After September 11, 2001, Among Adults Exposed to the World Trade Center Disaster. Journal of Occup Environ Med 2011; 53: 966-974. doi: 10.1097/JOM.0b013e31822a3596
101. Bowers B, Hasni S, Gruber BL. Sarcoidosis in World Trade Center Rescue Workers Presenting With Rheumatologic Manifestations. J Clin Rheumatol 2010; 16: 26-27. doi: 10.1097/RHU.0b013e3181c78856
102. Webber MP, Yip J, Zeig-Owens R, et al. Post-9/11 sarcoidosis in WTC-exposed firefighters and emergency medical service workers. Respir Med 2017; 132: 232-237. doi: 10.1016/j.rmed.2017.06.004
103. Hena KM, Murphy S, Zhang Y, et al. Clinical Evaluation of Sarcoidosis in Community Members with World Trade Center Dust Exposure. Int J Environ Res Public Health 2019; 16.
104. Sunil VR, Radbel J, Hussain S, et al. Sarcoid-Like Granulomatous Disease: Pathologic Case Series in World Trade Center Dust Exposed Rescue and Recovery Workers. Int J Environ Res Public Health 2019; 16:1291. doi: 10.3390/ijerph16071291
105. Lin NW, Maier LA. Occupational exposures and sarcoidosis: current understanding and knowledge gaps. Curr Opin Pulm Med 2022; 28: 144-151. doi: 10.1097/MCP.0000000000000835
106. Gentry JT, Nitowsky HM, Michael M, Jr. Studies on the epidemiology of sarcoidosis in the United States: the relationship to soil areas and to urban-rural residence. J Clin Invest 1955; 34: 1839-1856. doi: 10.1172/JCI103240
107. Hurley HJ, Close HP, English RS. Soil extracts as antigens in sarcoidosis. Am Rev Respir Dis 1962; 86: 100-102. doi: 10.1164/arrd.1962.86.1.100
108. Kajdasz DK, Lackland DT, Mohr LC, et al. A current assessment of rurally linked exposures as potential risk factors for sarcoidosis. Ann Epidemiol 2001; 11: 111-117. doi: 10.1016/s1047-2797(00)00179-4
109. Kreider ME, Christie JD, Thompson B, et al. Relationship of environmental exposures to the clinical phenotype of sarcoidosis. Chest 2005; 128: 207-215. doi: 10.1378/chest.128.1.207
110. Cummings MM. An evaluation of the possible relationship of pine pollen to sarcoidosis (a critical summary). Acta Med Scand Suppl. 1964;425:48-50. doi: 10.1111/j.0954-6820.1964.tb05696.x.
111. Hägerstrand I, Linell F. Sarcoidosis and pine pollen. II. Intratracheal pollen administration with a note on lymphogenic transport of pollen. Scand J Respir Dis. 1966;47:157-60. PMID: 5294123
112. Douglas JG, Middleton WG, Gaddie J, et al. Sarcoidosis: a disorder commoner in non-smokers? Thorax 1986; 41: 787-791. doi: 10.1136/thx.41.10.787
113. Hance AJ, Basset F, Saumon G, et al. Smoking and interstitial lung disease. The effect of cigarette smoking on the incidence of pulmonary histiocytosis X and sarcoidosis. Ann N Y Acad Sci 1986; 465: 643-656. doi: 10.1111/j.1749-6632.1986.tb18541.x
114. Valeyre D, Soler P, Clerici C, et al. Smoking and pulmonary sarcoidosis: effect of cigarette smoking on prevalence, clinical manifestations, alveolitis, and evolution of the disease. Thorax 1988; 43: 516-524. doi: 10.1136/thx.43.7.516
115. Peros-Golubicic T, Ljubic S. Cigarette smoking and sarcoidosis. Acta Med Croatica 1995; 49: 187-193. PMID: 8630452
116. Ungprasert P, Crowson CS, Matteson EL. Smoking, obesity and risk of sarcoidosis: A population-based nested case-control study. Respir Med 2016; 120: 87-90. doi: 10.1016/j.rmed.2016.10.003
117. Gerke AK, van Beek E, Hunninghake GW. Smoking inhibits the frequency of bronchovascular bundle thickening in sarcoidosis. Acad Radiol 2011; 18: 885-891. doi: 10.1016/j.acra.2011.02.015
118. Crouser ED, Smith RM, Culver DA, et al. A Pilot Randomized Trial of Transdermal Nicotine for Pulmonary Sarcoidosis. Chest 2021; 160:1340-1349. doi: 10.1016/j.chest.2021.05.031
119. Gupta D, Singh AD, Agarwal R, et al. Is tobacco smoking protective for sarcoidosis? A case-control study from North India. Sarcoidosis Vasc Diffuse Lung Dis 2010; 27: 19-26. PMID: 21086901
120. Hattori T, Konno S, Shijubo N, et al. Increased prevalence of cigarette smoking in Japanese patients with sarcoidosis. Respirology 2013; 18: 1152-1157. doi: 10.1111/resp.12153
121. Oncale M, Boswell E, Hefler H. Sneaky Sarcoidosis or a Metastatic Masquerade? - A case of nodular sarcoidosis. J La State Med Soc 2015; 167: 3-5. PMID: 25978747
122. Soybel A, DeJaco V, Ellison-Barnes A, et al. Sarcoidosis Associated With Electronic Cigarette Use in an Adult: A Case Report. J Med Cases 2022; 13: 95-98. doi: 10.14740/jmc3887
123. Liu HG, Yue CL, Bai YP. [Analysis of component and source of fine particulate matter in sarcoidosis granulomatous cells]. Zhonghua Bing Li Xue Za Zhi 2011; 40: 177-181. PMID: 21575389
124. Pirozzi CS, Mendoza DL, Xu YZ, et al. Short-Term Particulate Air Pollution Exposure is Associated with Increased Severity of Respiratory and Quality of Life Symptoms in Patients with Fibrotic Sarcoidosis. Int J Environ Res Public Health 2018; 15:1077. doi: 10.3390/ijerph15061077.
125. Rybicki BA, Amend KL, Maliarik MJ, et al. Photocopier exposure and risk of sarcoidosis in African-American sibs. Sarcoidosis Vasc Diffuse Lung Dis 2004; 21: 49-55. doi: 10.1007/s11083-004-2862-x
126. Reid JD, Andersen ME. Calcium oxalate in sarcoid granulomas. With particular reference to the small ovoid body and a note on the finding of dolomite. Am J Clin Pathol 1988; 90: 545-558. doi: 10.1093/ajcp/90.5.545
127. Visscher D, Churg A, Katzenstein AL. Significance of crystalline inclusions in lung granulomas. Mod Pathol 1988; 1: 415-419. PMID: 2851787
128. Symmans PJ, Brady K, Keen CE. Calcium oxalate crystal deposition in epithelioid histiocytes of granulomatous lymphadenitis: analysis by light and electronmicroscopy. Histopathology 1995; 27: 423-429. doi: 10.1111/j.1365-2559.1995.tb00305.x
129. Daniels DE, Patrick H, Sexauer WP, et al. Foreign body granulomas masquerading as sarcoidosis: polarizing light examination. Chest 2002; 122: 148s-149s.
130. Chen ES, Song ZM, Willett MH, et al. Serum Amyloid A Regulates Granulomatous Inflammation in Sarcoidosis through Toll-like Receptor-2. Am J Respir Crit Care Med 2010;181:360-73. doi: 10.1164/rccm.200905-0696OC
131. Herndon B, Quinn T, Wasson N, et al. Urease and Helicobacter spp. antigens in pulmonary granuloma. J Comp Pathol 2013; 148: 266-277. doi: 10.1016/j.jcpa.2012.06.011
132. Swaisgood CM, Oswald-Richter K, Moeller SD, et al. Development of a sarcoidosis murine lung granuloma model using Mycobacterium superoxide dismutase A peptide. Am J Respir Cell Mol Biol 2011; 44: 166-174. doi: 10.1165/rcmb.2009-0350OC
133. Werner JL, Escolero SG, Hewlett JT, et al. Induction of Pulmonary Granuloma Formation by Propionibacterium acnes Is Regulated by MyD88 and Nox2. Am J Respir Cell Mol Biol 2017; 56: 121-130. doi: 10.1165/rcmb.2016-0035OC
134. Drake WP, Pei Z, Pride DT, et al. Molecular analysis of sarcoidosis tissues for mycobacterium species DNA. Emerg Infect Dis 2002; 8:1334-41. doi: 10.3201/eid0811.020318
135. Yamada T, Eishi Y, Ikeda S, et al. In situ localization of Propionibacterium acnes DNA in lymph nodes from sarcoidosis patients by signal amplification with catalysed reporter deposition. J Pathol 2002; 198: 541-7. doi: 10.1002/path.1243
136. Rose CS, Martyny JW, Newman LS, et al. "Lifeguard lung": endemic granulomatous pneumonitis in an indoor swimming pool. Am J Public Health 1998; 88: 1795-1800. doi: 10.2105/ajph.88.12.1795
137. Laney AS, Cragin LA, Blevins LZ, et al. Sarcoidosis, asthma, and asthma-like symptoms among occupants of a historically water-damaged office building. Indoor Air 2009; 19: 83-90. doi: 10.1111/j.1600-0668.2008.00564.x
138. Tercelj M, Salobir B, Harlander M, et al. Fungal exposure in homes of patients with sarcoidosis - an environmental exposure study. Environ Health 2011; 10: 8. doi: 10.1186/1476-069X-10-8
139. Lhote R, Annesi-Maesano I, Nunes H, et al. Clinical phenotypes of extrapulmonary sarcoidosis: an analysis of a French, multi-ethnic, multicentre cohort. Eur Respir J 2021; 57:2001160. doi: 10.1183/13993003.01160-2020.
140. Balmes JR, Abraham JL, Dweik RA, et al. An Official American Thoracic Society Statement: Diagnosis and Management of Beryllium Sensitivity and Chronic Beryllium Disease Executive Summary. Am J Respir Crit Care Med 2014; 190:e34-59. doi: 10.1164/rccm.201409-1722ST
141. Stuart BO. Deposition and clearance of inhaled particles. Environ Health Perspect 1976; 16: 41-53. doi: 10.1289/ehp.761641
142. Montes JF, Ferrer J, Villarino MA, Baeza B, et al. Influence of talc dose on extrapleural talc dissemination after talc pleurodesis. Am J Respir Crit Care Med 2003; 168: 348-355. doi: 10.1164/rccm.200207-767OC
143. Pagán AJ, Ramakrishnan L. The Formation and Function of Granulomas. Annu Rev Immunol. 2018;36:639-665. doi: 10.1146/annurev-immunol-032712-100022
144. Herbath M, Fabry Z, Sandor M. Current concepts in granulomatous immune responses. Biol Futur 2021; 72:61-68. doi: 10.1007/s42977-021-00077-1
145. McKee AS, Fontenot AP. Interplay of innate and adaptive immunity in metal-induced hypersensitivity. Curr Opin Immunol. 2016; 42:25-30. doi: 10.1016/j.coi.2016.05.001
146. McKee AS, Atif SM, Falta MT, et al. Innate and Adaptive Immunity in Noninfectious Granulomatous Lung Disease. J Immunol. 2022; 208:1835-1843. doi: 10.4049/jimmunol.2101159
147. Romer FK, Christiansen SE, Kragballe K, et al. Studies of peripheral blood monocytes in pulmonary sarcoidosis. Clin Exp Immunol 1984; 58: 357-363. PMID: 6094058
148. Lepzien R, Liu S, Czarnewski P, et al. Monocytes in sarcoidosis are potent tumour necrosis factor producers and predict disease outcome. Eur Respir J 2021; 58:2003468. doi: 10.1183/13993003.03468-2020.
149. Haschka D, Petzer V, Kocher F, et al. Classical and intermediate monocytes scavenge non-transferrin-bound iron and damaged erythrocytes. JCI Insight 2019; 4:e98867. doi: 10.1172/jci.insight.98867.
150. Goto Y, Ishii H, Hogg JC, et al. Particulate matter air pollution stimulates monocyte release from the bone marrow. Am J Respir Crit Care Med 2004; 170: 891-897. doi: 10.1164/rccm.200402-235OC
151. Cekici Y, Yilmaz M, Secen O. New inflammatory indicators: association of high eosinophil-to-lymphocyte ratio and low lymphocyte-to-monocyte ratio with smoking. J Int Med Res 2019; 47: 4292-4303. doi: 10.1177/0300060519862077
152. Nielsen H. A quantitative and qualitative study of blood monocytes in smokers. Eur J Respir Dis 1985; 66: 327-332. PMID: 3894043
153. Nemmar A, Inuwa IM. Diesel exhaust particles in blood trigger systemic and pulmonary morphological alterations. Toxicol Lett 2008; 176: 20-30. doi: 10.1016/j.toxlet.2007.09.006
154. Bruske I, Hampel R, Socher MM, et al. Impact of ambient air pollution on the differential white blood cell count in patients with chronic pulmonary disease. Inhal Toxicol 2010; 22: 245-252. doi: 10.3109/08958370903207274
155. Su TC, Hwang JJ, Yang YR, et al. Association Between Long-term Exposure to Traffic-related Air Pollution and Inflammatory and Thrombotic Markers in Middle-aged Adults. Epidemiology 2017; 28 Suppl 1: S74-S81. doi: 10.1097/EDE.0000000000000715
156. van Waarde D, Hulsing-Hesselink E, Sandkuyl LA, et al. Humoral regulation of monocytopoiesis during the early phase of an inflammatory reaction caused by particulate substances. Blood 1977; 50: 141-154. PMID: 194638
157. Oberdorster G. Lung dosimetry: Pulmonary clearance of inhaled particles. Aerosol Science and Technology 1993; 18:279-289. doi.org/10.1080/02786829308959605
158. Harmsen AG, Muggenburg BA, Snipes MB, et al. The role of macrophages in particle translocation from lungs to lymph nodes. Science 1985;230:1277-80. doi: 10.1126/science.407105.
159. Galvin I, Drummond GB, Nirmalan M. Distribution of blood flow and ventilation in the lung: gravity is not the only factor. Br J Anaesth 2007; 98:420-8. doi: 10.1093/bja/aem036
160. Wallace WA, Gillooly M, Lamb D. Intra-alveolar macrophage numbers in current smokers and non-smokers: a morphometric study of tissue sections. Thorax 1992; 47:437-40. doi: 10.1136/thx.47.6.437
161. Yatera K, Hsieh J, Hogg JC, et al. Particulate matter air pollution exposure promotes recruitment of monocytes into atherosclerotic plaques. Am J Physiol Heart Circ Physiol 2008; 294: H944-H953. doi: 10.1152/ajpheart.00406.2007
162. Pettit AP, Brooks A, Laumbach R, et al. Alteration of peripheral blood monocyte gene expression in humans following diesel exhaust inhalation. Inhal Toxicol 2012; 24: 172-181. doi: 10.3109/08958378.2012.654856
163. Chaudhuri N, Jary H, Lea S, et al. Diesel exhaust particle exposure in vitro alters monocyte differentiation and function. PLoS One 2012; 7: e51107. doi: 10.1371/journal.pone.0051107
164. Fernandez IE, Kass DJ. Do Circulating Monocytes Promote and Predict Idiopathic Pulmonary Fibrosis Progression? Am J Respir Crit Care Med. 2021;204:9-11. doi: 10.1164/rccm.202101-0207ED.
165. Karampitsakos T, Torrisi S, Antoniou K, et al. Increased monocyte count and red cell distribution width as prognostic biomarkers in patients with Idiopathic Pulmonary Fibrosis. Respir Res 2021; 22:140. doi: 10.1186/s12931-021-01725-9.
166. Kreuter M, Lee JS, Tzouvelekis A, et al. Monocyte Count as a Prognostic Biomarker in Patients with Idiopathic Pulmonary Fibrosis. Am J Respir Crit Care Med 2021;204:74-81. doi: 10.1164/rccm.202003-0669O
167. Kreuter M, Lee JS, Tzouvelekis AE, et al. Monocyte Count as a Prognostic Biomarker in Patients with Idiopathic Pulmonary Fibrosis (IPF): A Retrospective, Pooled Analysis from Ascend, Capacity, and Inspire. Am J Respir Crit Care Med 2021;204:74-81. doi: 10.1164/rccm.202003-0669OC
168. Kreuter M, Maher TM. Can monocytes predict prognosis of idiopathic pulmonary fibrosis? Lancet Respir Med 2019;7:467-469. doi: 10.1016/S2213-2600(19)30050-5
169. Liu YZ, Saito S, Morris GF, et al. Proportions of resting memory T cells and monocytes in blood have prognostic significance in idiopathic pulmonary fibrosis. Genomics 2019; 111: 1343-1350. doi: 10.1016/j.ygeno.2018.09.006
170. Bernardinello N, Grisostomi G, Cocconcelli E, et al. The clinical relevance of lymphocyte to monocyte ratio in patients with Idiopathic Pulmonary Fibrosis (IPF). Respir Med 2022; 191: 106686. doi: 10.1016/j.rmed.2021.106686
171. Teoh AKY, Jo HE, Chambers DC, et al. Blood monocyte counts as a potential prognostic marker for idiopathic pulmonary fibrosis: analysis from the Australian IPF registry. Eur Respir J 2020; 55:1901855. doi: 10.1183/13993003.01855-201.
172. Quinn MT, Schepetkin IA. Role of NADPH oxidase in formation and function of multinucleated giant cells. J Innate Immun 2009; 1: 509-526. doi: 10.1159/000228158
173. Okamoto H, Mizuno K, Horio T. Langhans-type and foreign-body-type multinucleated giant cells in cutaneous lesions of sarcoidosis. Acta Derm Venereol 2003; 83: 171-174. doi: 10.1080/00015550310007148
174. Lee KP, Kelly DP. Translocation of particle-laden alveolar macrophages and intra-alveolar granuloma formation in rats exposed to Ludox colloidal amorphous silica by inhalation. Toxicology 1993; 77: 205-222. doi: 10.1016/0300-483x(93)90161-k
175. Callen JP. The presence of foreign bodies does not exclude the diagnosis of sarcoidosis. Arch Dermatol 2001 Apr;137:485-6. PMID: 11295930
176. Judson MA. Granulomatous sarcoidosis mimics. Front Med (Lausanne). 2021; 8:680989. doi: 10.3389/fmed.2021.680989
How to Cite
Issue
Section
License
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Transfer of Copyright and Permission to Reproduce Parts of Published Papers.
Authors retain the copyright for their published work. No formal permission will be required to reproduce parts (tables or illustrations) of published papers, provided the source is quoted appropriately and reproduction has no commercial intent. Reproductions with commercial intent will require written permission and payment of royalties.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.