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Deep learning approaches to predict late gadolinium 
enhancement and clinical outcomes in suspected cardiac 
sarcoidosis.
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To the Editor,

Cardiac sarcoidosis is an underdiagnosed cardiac 
condition at high risk for clinical events (1). Despite 
current guidelines, there is an unmet clinical need for 
stratifying the prognosis of these patients. A thresh-
old of 5.7% of late gadolinium enhancement (LGE) 
has been reported as being highly prognostically rel-
evant (2). Further, recent progress in artificial intelli-
gence has enabled automated detection and prognosis 
stratification in many diseases (3). The aim of the pre-
sent study was to establish a proof-of-concept that a 
deep learning model could predict late gadolinium 
enhancement burden and clinical outcomes in pa-
tients with suspected cardiac sarcoidosis using native 
LGE cardiac magnetic resonance (CMR) imaging 
frames. With Institutional Review Board approval 
(GCO-01-1032) and written informed consent, 
patients with clinical suspicion of active CS due to 
established extra-cardiac involvement and/or clinical 
presentation consistent with active cardiac sarcoido-
sis were prospectively recruited and followed-up 
at Mount Sinai Hospital, New York. Each patient 

underwent simultaneous cardiac magnetic resonance 
(MR) with late gadolinium enhancement (LGE) 
sequences on a hybrid MR/PET system (Biograph-
mMR, Siemens Healthineers) as previously described 
(4). The input was an LGE-sequence CMR image 
of the base of the heart (Figure 1, A). One frame 
corresponded to one patient (i.e one sample). Two 
model architectures were studied: InceptionV3 (5)  
and ResNet50 (6). Three different models were 
compared for each of these two architectures: ran-
dom weights initiation, pre-training on ImageNet, 
or pre-training on RadImageNet (7). A flatten layer 
and a dense layer of 512 units with a 50% of dropout 
were added on top of the base models. Models were 
trained for two binary classification tasks: (i) predict-
ing the presence of a LGE lesion (above 5.7% of the 
myocardium, defining LGE5.7+ group), (ii) predicting 
the occurrence of a clinical event (defined as the oc-
currence of either ventricular tachycardia (VT), com-
plete heart block (CHB)/acute heart failure (AHF) 
requiring hospitalization/death during follow-up). 
Hyperparameters were set as follows: Learning rate: 
0.001, number of epochs: 100 for all models for com-
parison, batch size: 8, stratified K-fold with K = 4, all 
models’ layers were trainable. Models’ explainability 
was studied with Keras’ class activation maps method 
Grad-Cam. A total of 116 patients were included. 
Median age was 56 years [50-62], 45 patients (40%) 
were women. Median left ventricular ejection frac-
tion was 59% [51-65]. Heart rhythm society cri-
teria for probable cardiac sarcoidosis were met in  
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52 patients (45%). Extra cardiac sarcoidosis was bi-
opsy-proven in 91 patients (78%). Median follow-up 
was 5.4 years [4.8-5.9]. Overall, 19 (16%) had sig-
nificant LGE lesions (>5.7%). A total of 66 patients 
(57%) had no LGE lesions. Mean LGE burden was 
3.2% (± 8) for the whole series and 12% (±12) in the 
LGE5.7+ group. Median CMR-to-event time was 
1.9 years [0.1-3.1]. A total of 23 (20%) developed 
a clinical event (9 VT, 3 CHB, 7 AHF, 4 deaths). 
Model performances are reported in Figure 1. For 
both tasks, the highest AUCs were obtained with a 
ResNet50 architecture, pretrained on RadImageNet 
(Figure 1, A). Best AUC for LGE lesion prediction 
was 0.80 (positive predictive value: 34%, negative 
predictive value: 88%; Figure 1, A and C). Best AUC 
for clinical event prediction was 0.67 (Figure 1, B 
and D). Class activation maps demonstrated relevant 
patterns of activation, establishing a proof-of-con-
cept that LGE can be predicted using native CMR 
imaging (Figure 1, E-L). This study has several limi-
tations. First, we acknowledge that only basal CMR 
frames were used rather than full imaging sequences. 
The latter strategy should be explored. However, its 
implementation is not straightforward and would 
consist in including the use of multiple models with a 
combined prediction strategy or in using a full CMR 
sequence framed as a video input feature. Second, 
this study is limited by the lack of prior determina-
tion of CS in the study cohort; we enrolled patients 
with a clinical suspicion of CS based on the history 
of sarcoidosis and cardiac symptoms and/or arrhyth-
mias suggestive of sarcoidosis, which therefore re-
flects a real-world population of patients undergoing 
PET and MR imaging. Third, only HRS diagnostic 
criteria were used although other criteria have been 
published. Fourth, the present findings could be ap-
plicable to any cardiomyopathy, not unique to car-
diac sarcoidosis per se.  However, we restricted our 
approach to cardiac sarcoidosis due to the clinical 
risk prediction unmet challenge and the high preva-
lence of adverse outcomes. Our model did not aim 
at predicting true cardiac sarcoidosis but rather at 
predicting LGE burden in a classical clinical setting, 
irrespective of definite or endomyocardial biopsy 

proven sarcoidosis. Fifth, there are well established, 
easily performed myocardial LGE quantification 
methods available, to determine myocardial scar 
burden, and this has been applied to ischemic and 
non-ischemic cardiomyopathies. However, previous 
attempts to detect LGE from native CMR frames 
required large amounts of data and have relied on 
segmenting the left ventricle, used images with pre-
contoured LGE lesions or tried a two-step pipeline 
with a PCA followed by a kernel method algorithm 
(8). Our pipeline allows the use of native CMR 
frames and demonstrated good performance using 
a small sample size. Our aim was not to provide a 
readily usable solution but rather evaluate, as a pre-
liminary effort, the ability of a deep learning frame-
work to extract and “understand” the notion of LGE 
and using it for clinical outcome prediction. In this 
context, we show that although LGE may be effec-
tively detected, performances for clinical outcomes 
prediction were poor. Further work should include a 
framework that utilizes multiple slices and/or mul-
timodality input features, either from imaging mo-
dalities such as 18F-fluorodeoxyglucose PET data, or 
clinical tests, to improve clinical predictions. Lastly, 
with regards to pretraining, we compared state-of-
the art model architectures with the latest and largest 
imaging datasets, with the general-purpose Ima-
geNet dataset and the newly developed and publicly 
available RadImageNet. While no CMR images 
were present in the RadImageNet dataset (7), pre-
training improved model performances. Our results 
further support the benefits of transfer learning in 
medical imaging, paving the way to new successful 
applications especially in rare diseases. To conclude, 
this study provides proof-of-principle that LGE 
burden prediction using CMR imaging of patients 
with cardiac sarcoidosis can be automated through 
deep learning models. Transfer learning strategies 
leveraging the RadImageNet dataset significantly 
and consistently improved models’ performances. 
Expanded models may be explored that combine ad-
ditional information from multiple image modalities 
while retaining the robustness and simplicity of an 
automated Deep Learning framework.
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Figure 1. Late Gadolinium Enhancement Detection in Cardiac Sarcoidosis Using Deep Learning and Transfer Learning strategies. A. Best 
model pipeline for LGE prediction. B. Best model pipeline for clinical event occurrence prediction. C. Performances according to model 
architecture and pre-training for LGE prediction. D. Performances according to model architecture and pre-training for clinical event 
occurrence prediction. E-L. Class activation maps results on the test set with a ResNet50 pretrained on RadImageNet for LGE (> 5.7%) 
prediction. The determining area of the image is the heart for model classification (positive and negative classes). E.I. True positive. Patient 
with significant LGE (yellow arrow), with model classifying correctly. F.J. False negative. Patient with significant LGE (yellow arrow). G.K. 
True negative. Patient with no LGE. H.L. False positive. Patient with non-significant LGE (yellow arrow) classified as LGE+ patient by 
the model.
Abbreviations: AUC, area under the curve; LGE, late gadolinium enhancement
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