Endocrine Morbidity and Growth Impairment in β-Thalassemia Intermedia: Insights from 25 Years of Multinational Studies
Keywords:
β-thalassemia intermedia, growth impairment, endocrine disorders, iron toxicity, global geographic disparities.Abstract
Background:
β-thalassemia intermedia (β-TI) represents a heterogeneous spectrum of severity. Although patients typically require fewer transfusions than those with β-thalassemia major, they remain at risk of iron overload from increased intestinal absorption and occasional transfusions. This iron burden, combined with chronic anemia, contributes to growth impairment and endocrine complications.
Objectives:
This review summarizes evidence on growth and endocrine outcomes in β-TI, describing prevalence patterns across regions, differences related to transfusion practices, and the quality of available research.
Methods:
PubMed, Scopus, and Google Scholar were searched through March 2025. Eligible studies included ≥10 patients with clinically or genetically confirmed β-TI and reported prevalence of short stature, growth hormone deficiency (GHD), hypogonadism, delayed puberty, hypothyroidism, hypoparathyroidism, diabetes mellitus (DM), or impaired glucose tolerance (IGT). Data on study design, sample characteristics, transfusion history, and iron indices were extracted. Study quality was assessed with modified MINORS and Cochrane criteria.
Results:
Eighteen studies from the Middle East, Asia, the Mediterranean, and North America were reviewed. Short stature affected 21–46% of patients, with higher rates in non-transfused cohorts. GHD was reported in 26–31%. Hypogonadism and delayed puberty occurred in 5–25%, particularly in intermittently transfused patients with greater iron load. Hypothyroidism varied from absent in pediatric groups to >20% in older cohorts, with subclinical cases more common. Hypoparathyroidism was rare (<2–4.4%). Abnormal glucose metabolism was observed in 2–25%, closely linked to hepatic iron burden. Large multicenter studies generally reported lower prevalence than small single-center series.
Conclusions:
Growth failure and endocrine abnormalities are common in β-TI, regardless of transfusion dependence. Variations reflect geography, iron overload, and healthcare resources. Standardized endocrine surveillance and multicenter collaborations are essential to improve early detection and management.
References
1. Cappellini MD, Cohen A, Eleftheriou A, et al. Guidelines for the clinical management of thalassaemia. 2nd revised ed. Nicosia (CY): Thalassaemia International Federation; 2008. Chapter 11, Thalassaemia intermedia and HbE. Available from: https://www.ncbi. nlm. nih.gov/books/NBK173973.
2. Musallam KM, Taher AT, Rachmilewitz EA. β-thalassemia intermedia: a clinical perspective. Cold Spring Harb Perspect Med. 2012;2(7):a013482. doi:10.1101/ cshperspect.a013482.
3. Yassin MA, Soliman AT, De Sanctis V, et al. Final height and endocrine complications in patients with β-thalassemia intermedia: our experience in non-transfused versus infrequently transfused patients and correlations with liver iron content. Mediterr J Hematol Infect Dis. 2019;11(1):e2019026. doi:10.4084/MJHID.2019.026.
4. Inati A, Noureldine MA, Mansour A, et al. Endocrine and bone complications in β-thalassemia intermedia: current understanding and treatment. Biomed Res Int. 2015;2015:813098. doi:10.1155/2015/813098.
5. Karamifar H, Karimi M, Amirhakimi GH, et al. Endocrine function in thalassemia intermedia. Int J Biomed Sci. 2006;2(3):236-240. PMID:23674986.
6. Karimi M, Zarei T, Haghpanah S, et al. Evaluation of endocrine complications in beta-thalassemia intermedia (β-TI): a cross-sectional multicenter study. Endocrine. 2020;69(1):220-227. doi:10.1007/s12020-019-02159-6.
7. Rafsanjani KA, Mafi N, Tafreshi RI, et al. Complications of β-thalassemia intermedia in Iran during 1996–2010 (single-center study). Pediatr Hematol Oncol. 2011;28(6):497-508. doi:10.3109/08880018.2011.572144.
8. Zekavat OR, Makarem AR, Haghpanah S, et al. Hypothyroidism in β-thalassemia intermedia patients with and without hydroxyurea. Iran J Med Sci. 2014;39(1):60-63. PMID:24516768.
9. Abdulla JA, Polus RK. Assessment of thyroid function in patients with β-thalassemia major and intermedia: a comparative study. Diyala J Med. 2019;17(2):115-126. doi:10.26505/DJM.17024760626.
10. Abdel-Razek AR, Abdel-Salam A, El-Sonbaty MM, et al. Study of thyroid function in Egyptian children with β-thalassemia major and β-thalassemia intermedia. J Egypt Public Health Assoc. 2013;88(3):148-152. doi:10.1097/01.EPX.0000436490.10201.28.
11. Abdulwahid DA, Hassan MK. β- and α-thalassemia intermedia in Basra, Southern Iraq. Hemoglobin. 2013;37(6):553-563. doi:10.3109/03630269.2013.825841.
12. Luo Y, Bajoria R, Lai Y, et al. Prevalence of abnormal glucose homeostasis in Chinese patients with non-transfusion-dependent thalassemia. Diabetes Metab Syndr Obes. 2019;12:457-468. doi:10.2147/DMSO.S194591.
13. Vogiatzi MG, Macklin EA, Trachtenberg FL, et al. Differences in the prevalence of growth, endocrine and vitamin D abnormalities among the various thalassaemia syndromes in North America. Br J Haematol. 2009;146(5):546-556. doi:10.1111/j.1365-2141.2009.07793.x.
14. Carsote M, Vasiliu C, Trandafir AI, et al. New entity—thalassemic endocrine disease: major beta-thalassemia and endocrine involvement. Diagnostics (Basel). 2022;12(8): 1921. doi:10.3390/diagnostics12081921.
15. De Sanctis V, Soliman AT, Canatan D, et al. An ICET-A survey on hypoparathyroidism in patients with thalassemia major and intermedia: a preliminary report. Acta Biomed. 2018; 88(4):435-444. doi:10.23750/abm.v88i4.6837
16. Hossain MS, Islam F, Akhter S, et al. Thalassemia in Bangladesh: progress, challenges, and a strategic blueprint for prevention. Orphanet J Rare Dis. 2025;20(1):358. doi:10. 1186/s13023-025-03744-x.
17. Kattamis A, Forni GL, Aydinok Y, et al. Changing patterns in the epidemiology of β-thalassemia. Eur J Haematol. 2020;105(6):692-703. doi:10.1111/ejh.13512.
18. Old JM, Angastiniotis M, Eleftheriou A, et al. Prevention of thalassaemias and other haemoglobin disorders. Vol 1: Principles. 2nd ed. Nicosia: Thalassaemia International Federation; 2013.
19. Chapin J, Cohen AR, Neufeld EJ, et al. An update on the US adult thalassaemia population: a report from the CDC thalassaemia treatment centres. Br J Haematol. 2022;196(2):380-389. doi:10.1111/bjh.17920.
20. Faranoush P, Elahinia A, Ziaee A, et al. Review of endocrine complications in transfusion-dependent thalassemia. Iran J Blood Cancer. 2023;15(4):212-235. Available from: http://ijbc.ir/article-1-1401-en.html.
21. Langer AL. Beta-thalassemia. 2000 Sep 28 [updated 2024 Feb 8]. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington; 1993–2025. Available from: https://www.ncbi.nlm.nih.gov/ books/ NBK1426.
22. Meloni A, Pistoia L, Ricchi P, et al. Prevalence of multi-organ complications in patients with non-transfusion and neo-transfusion dependent thalassemia: a cross-sectional survey. Blood Cells Mol Dis. 2025;115:102953. doi:10.1016/j.bcmd.2025.102953.
23. Hossain MS, Raheem E, Sultana TA, et al. Thalassemias in South Asia: clinical lessons learnt from Bangladesh. Orphanet J Rare Dis. 2017;12:93. doi:10.1186/s13023-017-0643-z.
24. Khan AM, Al-Sulaiti AM, Younes S, et al. The spectrum of beta-thalassemia mutations in the 22 Arab countries: a systematic review. Expert Rev Hematol. 2021;14(1):109-122. doi:10.1080/17474086.2021.1860003.
25. Galanello R, Origa R. Beta-thalassemia. Orphanet J Rare Dis. 2010;5:11. doi:10. 1186/ 1750-1172-5-11.
26. Flint J, Harding RM, Boyce AJ, et al. The population genetics of the haemoglobinopathies. Baillieres Clin Haematol. 1998;11(1):1-51. doi:10.1016/s0950-3536(98)80069-3.
27. De Sanctis V, Soliman AT, Elsedfy H, et al. Growth and endocrine disorders in thalassemia: The international network on endocrine complications in thalassemia (I-CET) position statement and guidelines. Indian J Endocrinol Metab. 2013;17(1):8-18. doi:10.4103/2230-8210.107808.
28. Pollack RD, Rachmilewitz E, Blumenfeld A, et al. Bone mineral metabolism in adults with beta-thalassaemia major and intermedia. Br J Haematol. 2000;111(3):902-907. doi:10.1046/j.1365-2141.2000.02449.x.
29. Noetzli LJ, Carson SM, Nord AS, et al. Longitudinal analysis of heart and liver iron in thalassemia major. Blood. 2008;112(7):2973-2978. doi:10.1182/blood-2008-04-149732.
30. Taher A, Hershko C, Cappellini MD. Iron overload in thalassaemia intermedia: reassessment of iron chelation strategies. Br J Haematol. 2009;147(5):634-640. doi:10.1111/j.1365-2141.2009.07848.x.
31. Dandona P, Menon RK, Houlder S, et al. Serum ferritin and endocrine function in thalassaemia major. Arch Dis Child. 1987;62(8):784-787. doi:10.1136/adc.62.8.784.
32. Chatterjee R, Bajoria R, Porter J, et al. The endocrine aspects of thalassaemia: a guide to diagnosis and management. Nicosia (CY): Thalassaemia International Federation; 2012.
33. Soliman A, De Sanctis V, Yassin M, et al. Growth hormone–insulin-like growth factor-I axis and bone mineral density in adults with thalassemia major. Indian J Endocrinol Metab. 2014;18(1):32-38. doi:10.4103/2230-8210.126525.
34. Danesi L, Cattaneo A, Valassi E, et al. The growth hormone–insulin-like growth factor-I axis in adult thalassemic patients. Endocr Abstr. 2007;14:P181.
35. Christoforidis A, Perifanis V, Athanassiou-Metaxa M. Growth and endocrine function in thalassaemia major in Northern Greece. Pediatr Endocrinol Rev. 2004;2 Suppl 2:267-271. PMID:16462710.
36. Farmaki K, Tzoumari I, Pappa C, et al. Normalisation of total body iron load with very intensive combined chelation reverses cardiac and endocrine complications of thalassaemia major. Br J Haematol. 2010;148(3):466-475. doi:10.1111/j.1365-2141. 2009.07970.x.
37. Goldberg EK, Lal A, Fung EB. Nutrition in thalassemia: a systematic review of deficiency, relations to morbidity, and supplementation recommendations. J Pediatr Hematol Oncol. 2022;44(1):1-11. doi:10.1097/MPH.0000000000002291.
38. Goldberg EK, Lal A, Fung EB. Nutrition in thalassemia: a systematic review of deficiency, relations to morbidity, and supplementation recommendations. J Pediatr Hematol Oncol. 2022;44(1):1-11. doi:10.1097/MPH.0000000000002291.
39. Musallam KM, Cappellini MD, Wood JC, et al. Elevated liver iron concentration is a marker of increased morbidity in patients with β-thalassemia intermedia. Haematologica. 2011;96(11):1605-1612. doi:10.3324/haematol.2011.047852.
40. Chuncharunee S, Teawtrakul N, Siritanaratkul N, et al. Review of disease-related complications and management in adult patients with thalassemia: a multi-center study in Thailand. PLoS One. 2019;14(3):e0214148. doi:10.1371/journal.pone.0214148.
41. Teawtrakul N, Jetsrisuparb A, Pongudom S, et al. Epidemiologic study of major complications in adolescent and adult patients with thalassemia in Northeastern Thailand: the E-SAAN study phase I. Hematology. 2018;23(1):55-60. doi:10.1080/10245332. 2017.1358845.
42. Shamoon RP, Yassin AK, Omar N, et al. Magnitude of bone disease in transfusion-dependent and non-transfusion-dependent β-thalassemia patients. Cureus. 2024;16(3): e56012. doi:10.7759/cureus.56012.
43. De Sanctis V, Soliman AT, Canatan D, et al. Thyroid disorders in homozygous β-thalassemia: current knowledge, emerging issues and open problems. Mediterr J Hematol Infect Dis. 2019;11(1):e2019029. doi:10.4084/MJHID.2019.029.
44. Siddiqui JA, Anand A, Haider R, et al. Study on association of serum ferritin level with growth, thyroid profile, and oral glucose tolerance test in the β-thalassemia major children in pediatric department of DMCH, Laheriasarai. Int J Pharm Qual Assur. 2025;16(6):212-223.
45. Karamifar H, Karimi M, Amirhakimi GH, et al. Endocrine function in thalassemia intermedia. Int J Biomed Sci. 2006;2(3):236-240. PMID:23674986.
46. Taher AT, Musallam KM, Cappellini MD. Thalassaemia intermedia: an update. Mediterr J Hematol Infect Dis. 2009;1(1):e2009004. doi:10.4084/MJHID.2009.004.
47. Karimi M, Ghiam AF, Hashemi A, et al. Bone mineral density in beta-thalassemia major and intermedia. Indian Pediatr. 2007;44(1):29-32. PMID:17264459.
48. Baldini M, Marcon A, Cassin R, et al. β-thalassemia intermedia: evaluation of endocrine and bone complications. Biomed Res Int. 2014;2014:174581. doi:10.1155/2014/174581
49. Aessopos A, Berdoukas V. Cardiac function and iron chelation in thalassemia major and intermedia: a review of the underlying pathophysiology and approach to chelation management. Mediterr J Hematol Infect Dis. 2009;1(1):e2009002. doi:10.4084/ MJHID. 2009.002.
50. Farmaki K, Tzoumari I, Pappa C, et al. Normalisation of total body iron load with very intensive combined chelation reverses cardiac and endocrine complications of thalassaemia major. Br J Haematol. 2010;148(3):466-475. doi:10.1111/j.1365-2141.2009.07970.x.
51. Eghbali A, Taherahmadi H, Shahbazi M, et al. Association between serum ferritin level, cardiac and hepatic T2-star MRI in patients with major β-thalassemia. Iran J Pediatr Hematol Oncol. 2014;4(1):17-21. PIMD:24734159.
52. Sadiq IZ, Abubakar FS, Usman HS, et al. Thalassemia: pathophysiology, diagnosis, and advances in treatment. Thalass Rep. 2024;14(4):81-102. doi:10.3390/ thalassrep 14040010.
53. Al Akhras A, Badr M, El Safy U, et al. Impact of genotype on endocrinal complications in β-thalassemia patients. Biomed Rep. 2016;4(6):728-736. doi:10.3892/br.2016.644.
54. Shah R, Trehan A, Das R, et al. Serum ferritin in thalassemia intermedia. Indian J Hematol Blood Transfus. 2014;30(4):281-285. doi:10.1007/s12288-013-0267-y.
55. Chapchap EC, Silva MMA, de Assis RA, et al. Cardiac iron overload evaluation in thalassaemic patients using T2* magnetic resonance imaging following chelation therapy: a multicentre cross-sectional study. Hematol Transfus Cell Ther. 2023;45(1):7-15. doi:10. 1016/j.htct.2021.01.014.
How to Cite
Issue
Section
License
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Transfer of Copyright and Permission to Reproduce Parts of Published Papers.
Authors retain the copyright for their published work. No formal permission will be required to reproduce parts (tables or illustrations) of published papers, provided the source is quoted appropriately and reproduction has no commercial intent. Reproductions with commercial intent will require written permission and payment of royalties.