Nomogram-based prediction of growth retardation in pediatric deletional α-thalassemia: Evidence from the Mekong Delta, Vietnam
Keywords:
alpha-thalassemia, child, growth disorders, risk factors, predictive model, nomograms, Vietnam, Mekong Delta, pediatricsAbstract
Background and aim: Growth retardation is a common complication in children with deletional α-thalassemia. Limited epidemiological data exist on growth retardation in α-thalassemia patients from low-resource settings such as Vietnam. This study investigates the prevalence and associated factors of growth retardation in pediatric patients with α-thalassemia to inform targeted interventions.
Methods: A multicenter cross-sectional study was conducted involving children with confirmed deletional α-thalassemia from August 2022 to June 2023. Clinical, laboratory, and genetic data were analyzed to identify predictors of growth retardation.
Results: Growth retardation affected 17.1% of the study population. Key predictors included splenomegaly ≥ grade II (OR = 12.5; 95% CI, 1.69–92.25; p = 0.013), hemoglobin levels <7 g/dL (OR = 7.67; 95% CI, 1.12–52.32; p = 0.038), and having siblings with thalassemia (OR = 13.5; 95% CI, 1.57–115.9; p = 0.018). A predictive nomogram was developed, demonstrating excellent discrimination with an area under the curve of 0.92 (95% CI, 0.82–1.0; p = 0.001) and good calibration (Hosmer–Lemeshow test, χ2(df) = 0.139 (1); p = 0.709).
Conclusions: This study highlights the prevalence and associated factors of growth retardation in pediatric patients with α-thalassemia in the Mekong Delta, Vietnam. By identifying key predictors and developing a practical predictive tool for early risk assessment, these findings provide a foundation for targeted interventions aimed at improving clinical outcomes, particularly in resource-limited settings.
References
1. Harteveld CL, Higgs DR. α-thalassaemia. Orphanet J Rare Dis. 2010;5(1):13. doi:10.1186/1750-1172-5-13
2. Cao A, Kan YW. The Prevention of Thalassemia. Cold Spring Harb Perspect Med. 2013;3(2):a011775. doi:10.1101/cshperspect.a011775
3. Modell B, Darlison M. Global epidemiology of haemoglobin disorders and derived service indicators. Bull World Health Organ. 2008;86(6):480-487. doi:10.2471/blt.06.036673
4. Weatherall DJ. Thalassemia as a global health problem: recent progress toward its control in the developing countries. Ann N Y Acad Sci. 2010;1202:17-23. doi:10.1111/j.1749-6632.2010.05546.x
5. Songdej D, Fucharoen S. Alpha-Thalassemia: Diversity of Clinical Phenotypes and Update on the Treatment. Thalass Rep. 2022;12(4):157-172. doi:10.3390/thalassrep12040020
6. Vijian D, Wan Ab Rahman WS, Ponnuraj KT, Zulkafli Z, Mohd Noor NH. Molecular Detection of Alpha Thalassemia: A Review of Prevalent Techniques. Medeni Med J. 2021;36(3):257-269. doi:10.5222/MMJ.2021.14603
7. Nga PTN, Kien NT. Genetic Mutation Types Detected in 25 Blood Samples of KHMER Patient with Beta-thalassemia in Bac Lieu Province. In: Toi VV, Lien Phuong TH, eds. 5th International Conference on Biomedical Engineering in Vietnam. Springer International Publishing; 2015:253-256. doi:10.1007/978-3-319-11776-8_61
8. Weatherall DJ. Phenotype—genotype relationships in monogenic disease: lessons from the thalassaemias. Nat Rev Genet. 2001;2(4):245-255. doi:10.1038/35066048
9. Chui DHK, Fucharoen S, Chan V. Hemoglobin H disease: not necessarily a benign disorder. Blood. 2003;101(3):791-800. doi:10.1182/blood-2002-07-1975
10. Vichinsky E. Complexity of alpha thalassemia: growing health problem with new approaches to screening, diagnosis, and therapy. Ann N Y Acad Sci. 2010;1202:180-187. doi:10.1111/j.1749-6632.2010.05572.x
11. Zhang HJ, Amid A, Janzen LA, et al. Outcomes of haemoglobin Bart’s hydrops fetalis following intrauterine transfusion in Ontario, Canada. Arch Dis Child Fetal Neonatal Ed. 2021;106(1):51-56. doi:10.1136/archdischild-2019-317626
12. Fung EB, Harmatz PR, Lee PDK, et al. Increased prevalence of iron-overload associated endocrinopathy in thalassaemia versus sickle-cell disease. Br J Haematol. 2006;135(4):574-582. doi:10.1111/j.1365-2141.2006.06332.x
13. Toumba M, Sergis A, Kanaris C, Skordis N. Endocrine complications in patients with Thalassaemia Major. Pediatr Endocrinol Rev. 2007;5(2):642-648. PMID: 18084158.
14. Hershko C. Pathogenesis and management of iron toxicity in thalassemia. Ann N Y Acad Sci. 2010;1202:1-9. doi:10.1111/j.1749-6632.2010.05544.x
15. Atmakusuma TD, Hasibuan FD, Purnamasari D. The Correlation Between Iron Overload and Endocrine Function in Adult Transfusion-Dependent Beta-Thalassemia Patients with Growth Retardation. J Blood Med. 2021;12:749-753. doi:10.2147/JBM.S325096
16. Skordis N, Kyriakou A. The multifactorial origin of growth failure in thalassaemia. Pediatr Endocrinol Rev. 2011;8 Suppl 2:271-277.
17. Nguyen NVN, Lam TM. Characteristics of Thalassemia at Can Tho Children’s Hospital from December 2010 to June 2011. HCMC J Med. 2012;16(1):51-56.
18. Pham TN, Nguyen DT. Clinical and paraclinical characteristics by disease type in pediatric thalassemia patients at Quang Ngai Obstetrics and Pediatrics Hospital. Vietnam Med J. 2022;2:517. doi:10.51298/vmj.v517i2.3243
19. Kyriakou A, Skordis N. Thalassaemia and Aberrations of Growth and Puberty. Mediterr J Hematol Infect Dis. 2009;1(1):e2009003. doi:10.4084/MJHID.2009.003
20. Surapolchai P, Songdej D, Hantaweepant C, et al. Thalassemia-related complications in pediatric, adolescent, and young adult patients with transfusion-dependent thalassemia: A multicenter study in Thailand. Pediatr Blood Cancer. 2023;70(10):e30599. doi:10.1002/pbc.30599
21. Brancaleoni V, Di Pierro E, Motta I, Cappellini MD. Laboratory diagnosis of thalassemia. Int J Lab Hematol. 2016;38 Suppl 1:32-40. doi:10.1111/ijlh.12527
22. Organization WH. Physical Status: The Use and Interpretation of Anthropometry: Report of a WHO Expert Committee. Tech Rep Ser. 1995;854:1-452.
23. Nutrition and Food Safety (NFS). World Health Organization Child Growth Standards: Length/Height-for-Age, Weight-for-Age, Weight-for-Length, Weight-for-Height and Body Mass Index-for-Age: Methods and Development. WHO Press; 2006. Accessed July 9, 2022. https://www.who.int/publications/i/item/924154693X
24. Leoni S, Buonfrate D, Angheben A, Gobbi F, Bisoffi Z. The hyper-reactive malarial splenomegaly: a systematic review of the literature. Malar J. 2015;14(1):185. doi:10.1186/s12936-015-0694-3
25. Amid A, Lal A, Coates TD, Fucharoen S, eds. Guidelines for the Management of α-Thalassaemia. Thalassaemia International Federation; 2023. PMID: 38556968
26. ABT Biotechnology. TopPURE Blood DNA Extraction KIT (HI-132). Vietnam: ABT Biotechnology; 2021. https://abtvn.com/en/product/toppure-blood-dna-extraction-kit/
27. Qiagen. Multiplex PCR Master Mix. Cat. No. 206143. 2021. https://www.qiagen.com/us/products/discovery-and-translational-research/pcr-qpcr-dpcr/pcr-enzymes-and-kits/end-point-pcr/qiagen-multiplex-pcr-kit
28. Chong SS, Boehm CD, Higgs DR, Cutting GR. Single-tube multiplex-PCR screen for common deletional determinants of alpha-thalassemia. Blood. 2000;95(1):360-362.
29. Bioline. HyperLadder 1kb. London, UK: Bioline; 2021. https://www.bioline.com/hyperladder-1kb.html
30. Luo HC, Luo QS, Huang FG, Wang CF, Wei YS. Impact of genotype on endocrinal complications of Children with Alpha-thalassemia in China. Sci Rep. 2017;7:2948. doi:10.1038/s41598-017-03029-9
31. De Sanctis V, Roos M, Gasser T, et al. Impact of long-term iron chelation therapy on growth and endocrine functions in thalassaemia. J Pediatr Endocrinol Metab. 2006;19(4):471-480. PMID: 16759032.
32. Kajanachumpol S, Tatu T, Sasanakul W, Chuansumrit A, Hathirat P. Zinc and copper status of thalassemic children. Southeast Asian J Trop Med Public Health. 1997;28(4):877-880. PMID: 9656419.
33. Imamoğlu S, Bereket A, Turan S, Taga Y, Haklar G. Effect of zinc supplementation on growth hormone secretion, IGF-I, IGFBP-3, somatomedin generation, alkaline phosphatase, osteocalcin and growth in prepubertal children with idiopathic short stature. J Pediatr Endocrinol Metab. 2005;18(1):69-74. doi:10.1515/jpem.2005.18.1.69
34. Arcasoy A, Canata D, Sinav B, Kutlay L, Oguz N, Sen M. Serum zinc levels and zinc binding capacity in thalassemia. J Trace Elem Med Biol. 2001;15(2-3):85-87. doi:10.1016/s0946-672x(01)80048-1
35. Soliman AT, Sanctis VD, Elalaily R, Yassin M. Insulin-like growth factor- I and factors affecting it in thalassemia major. Indian J Endocrinol Metab. 2015;19(2):245-251. doi:10.4103/2230-8210.131750
36. Moiz B, Habib A, Sawani S, Raheem A, Hasan B, Gangwani M. Anthropometric measurements in children having transfusion-dependent beta thalassemia. Hematology. 2018;23(4):248-252. doi:10.1080/10245332.2017.1396044
37. Farashi S, Harteveld CL. Molecular basis of α-thalassemia. Blood Cells Mol Dis. 2018;70:43-53. doi:10.1016/j.bcmd.2017.09.004
38. Charoenwijitkul T, Singha K, Fucharoen G, et al. Molecular characteristics of α+-thalassemia (3.7 kb deletion) in Southeast Asia: Molecular subtypes, haplotypic heterogeneity, multiple founder effects and laboratory diagnostics. Clin Biochem. 2019;71:31-37. doi:10.1016/j.clinbiochem.2019.06.005
39. Sadiq IZ, Abubakar FS, Usman HS, et al. Thalassemia: Pathophysiology, Diagnosis, and Advances in Treatment. Thalass Rep. 2024;14(4):81-102. doi:10.3390/thalassrep14040010
40. Szczałuba K, Obersztyn E, Nowakowska B, et al. [Alpha-thalassemia/mental retardation syndrome (ATR-X) in two brothers - clinical characteristics, diagnostics and genetic counselling issues]. Med Wieku Rozwoj. 2011;15(4):437-444. PMID: 22516698.
41. Amid A, Chen S, Brien W, Kirby-Allen M, Odame I. Optimizing chronic transfusion therapy for survivors of hemoglobin Barts hydrops fetalis. Blood. 2016;127(9):1208-1211. doi:10.1182/blood-2015-10-673889
42. Blackburn CR. On the clinical detection of enlargement of the spleen. Australas Ann Med. 1953;2(1):78-80. doi:10.1111/imj.1953.2.1.78
43. Hunnuan I, Sanpkit K, Lertbannaphong O, Buaboonnam J. Hemoglobin H Disease and Growth: A Comparative Study of DHbH and NDHbH Patients. Mediterr J Hematol Infect Dis. 2023;15(1):e2023045. doi:10.4084/MJHID.2023.045
44. Katal S, Mahajan S, Pandita P, et al. Splenomegaly and Cholelithiasis in Patients with Thalassemia Major and Thalassemia Intermedia. Int J Pharm Clin Res. 2023;15(10):650-655.
45. Williams, Maitland, Martin, Weatherall, Clegg. Splenic size in homozygous α+ thalassaemia. Br J Haematol. 1998;100(3):611-612. doi:10.1046/j.1365-2141.1998.0636h.x
46. Lal A, Goldrich ML, Haines DA, Azimi M, Singer ST, Vichinsky EP. Heterogeneity of hemoglobin H disease in childhood. N Engl J Med. 2011;364(8):710-718. doi:10.1056/NEJMoa1010174
47. Singer ST, Kim HY, Olivieri NF, et al. Hemoglobin H-constant spring in North America: an alpha thalassemia with frequent complications. Am J Hematol. 2009;84(11):759-761. doi:10.1002/ajh.21523
48. Wasi P, Na-Nakorn S, Pootrakul S, et al. Alpha- and beta-thalassemia in Thailand. Ann N Y Acad Sci. 1969;165(1):60-82. doi:10.1111/j.1749-6632.1969.tb27777.x
49. Songdej D, Tandhansakul M, Wongwerawattanakoon P, Sirachainan N, Charoenkwan P, Chuansumrit A. Severity scoring system to guide transfusion management in pediatric non-deletional HbH. Pediatr Int. 2023;65(1):e15568. doi:10.1111/ped.15568
Downloads
How to Cite
Issue
Section
License
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Transfer of Copyright and Permission to Reproduce Parts of Published Papers.
Authors retain the copyright for their published work. No formal permission will be required to reproduce parts (tables or illustrations) of published papers, provided the source is quoted appropriately and reproduction has no commercial intent. Reproductions with commercial intent will require written permission and payment of royalties.