Nomogram-based prediction of growth retardation in pediatric deletional α-thalassemia: Evidence from the Mekong Delta, Vietnam

This is a preview and has not been published.

Nomogram-based prediction of growth retardation in pediatric deletional α-thalassemia: Evidence from the Mekong Delta, Vietnam

Authors

  • Nghia Quang Bui Department of Pediatrics, Faculty of Medicine, Can Tho University of Medicine and Pharmacy, Can Tho City, Vietnam https://orcid.org/0009-0002-6506-784X
  • Ngoc Bich Tran Department of Pediatrics, Faculty of Medicine, Can Tho University of Medicine and Pharmacy, Can Tho City, Vietnam; Medical Education and Skills Training Center, Can Tho University of Medicine and Pharmacy, Can Tho City, Vietnam https://orcid.org/0009-0007-1129-3944
  • Tram Van Ta Tien Giang General Hospital, Tien Giang, Vietnam
  • Linh My Duong Department of Obstetrics and Gynecology, Faculty of Medicine, Can Tho University of Medicine and Pharmacy, Can Tho City, Vietnam
  • Ngoc-Nga Pham-Thi Department of Biology and Genetics, Faculty of Basic Sciences, Can Tho University of Medicine and Pharmacy, Can Tho City, Vietnam https://orcid.org/0000-0002-9321-132X
  • Vinh The Nguyen Department of Pediatrics, Faculty of Medicine, Can Tho University of Medicine and Pharmacy, Can Tho City, Vietnam https://orcid.org/0009-0008-5176-5202
  • Ly Cong Tran Department of Pediatrics, Faculty of Medicine, Can Tho University of Medicine and Pharmacy, Can Tho City, Vietnam https://orcid.org/0000-0003-0090-7289

Keywords:

alpha-thalassemia, child, growth disorders, risk factors, predictive model, nomograms, Vietnam, Mekong Delta, pediatrics

Abstract

Background and aim: Growth retardation is a common complication in children with deletional α-thalassemia. Limited epidemiological data exist on growth retardation in α-thalassemia patients from low-resource settings such as Vietnam. This study investigates the prevalence and associated factors of growth retardation in pediatric patients with α-thalassemia to inform targeted interventions.

Methods: A multicenter cross-sectional study was conducted involving children with confirmed deletional α-thalassemia from August 2022 to June 2023. Clinical, laboratory, and genetic data were analyzed to identify predictors of growth retardation.

Results: Growth retardation affected 17.1% of the study population. Key predictors included splenomegaly ≥ grade II (OR = 12.5; 95% CI, 1.69–92.25; p = 0.013), hemoglobin levels <7 g/dL (OR = 7.67; 95% CI, 1.12–52.32; p = 0.038), and having siblings with thalassemia (OR = 13.5; 95% CI, 1.57–115.9; p = 0.018). A predictive nomogram was developed, demonstrating excellent discrimination with an area under the curve of 0.92 (95% CI, 0.82–1.0; p = 0.001) and good calibration (Hosmer–Lemeshow test, χ2(df) = 0.139 (1); p = 0.709).

Conclusions: This study highlights the prevalence and associated factors of growth retardation in pediatric patients with α-thalassemia in the Mekong Delta, Vietnam. By identifying key predictors and developing a practical predictive tool for early risk assessment, these findings provide a foundation for targeted interventions aimed at improving clinical outcomes, particularly in resource-limited settings. 

References

1. Harteveld CL, Higgs DR. α-thalassaemia. Orphanet J Rare Dis. 2010;5(1):13. doi:10.1186/1750-1172-5-13

2. Cao A, Kan YW. The Prevention of Thalassemia. Cold Spring Harb Perspect Med. 2013;3(2):a011775. doi:10.1101/cshperspect.a011775

3. Modell B, Darlison M. Global epidemiology of haemoglobin disorders and derived service indicators. Bull World Health Organ. 2008;86(6):480-487. doi:10.2471/blt.06.036673

4. Weatherall DJ. Thalassemia as a global health problem: recent progress toward its control in the developing countries. Ann N Y Acad Sci. 2010;1202:17-23. doi:10.1111/j.1749-6632.2010.05546.x

5. Songdej D, Fucharoen S. Alpha-Thalassemia: Diversity of Clinical Phenotypes and Update on the Treatment. Thalass Rep. 2022;12(4):157-172. doi:10.3390/thalassrep12040020

6. Vijian D, Wan Ab Rahman WS, Ponnuraj KT, Zulkafli Z, Mohd Noor NH. Molecular Detection of Alpha Thalassemia: A Review of Prevalent Techniques. Medeni Med J. 2021;36(3):257-269. doi:10.5222/MMJ.2021.14603

7. Nga PTN, Kien NT. Genetic Mutation Types Detected in 25 Blood Samples of KHMER Patient with Beta-thalassemia in Bac Lieu Province. In: Toi VV, Lien Phuong TH, eds. 5th International Conference on Biomedical Engineering in Vietnam. Springer International Publishing; 2015:253-256. doi:10.1007/978-3-319-11776-8_61

8. Weatherall DJ. Phenotype—genotype relationships in monogenic disease: lessons from the thalassaemias. Nat Rev Genet. 2001;2(4):245-255. doi:10.1038/35066048

9. Chui DHK, Fucharoen S, Chan V. Hemoglobin H disease: not necessarily a benign disorder. Blood. 2003;101(3):791-800. doi:10.1182/blood-2002-07-1975

10. Vichinsky E. Complexity of alpha thalassemia: growing health problem with new approaches to screening, diagnosis, and therapy. Ann N Y Acad Sci. 2010;1202:180-187. doi:10.1111/j.1749-6632.2010.05572.x

11. Zhang HJ, Amid A, Janzen LA, et al. Outcomes of haemoglobin Bart’s hydrops fetalis following intrauterine transfusion in Ontario, Canada. Arch Dis Child Fetal Neonatal Ed. 2021;106(1):51-56. doi:10.1136/archdischild-2019-317626

12. Fung EB, Harmatz PR, Lee PDK, et al. Increased prevalence of iron-overload associated endocrinopathy in thalassaemia versus sickle-cell disease. Br J Haematol. 2006;135(4):574-582. doi:10.1111/j.1365-2141.2006.06332.x

13. Toumba M, Sergis A, Kanaris C, Skordis N. Endocrine complications in patients with Thalassaemia Major. Pediatr Endocrinol Rev. 2007;5(2):642-648. PMID: 18084158.

14. Hershko C. Pathogenesis and management of iron toxicity in thalassemia. Ann N Y Acad Sci. 2010;1202:1-9. doi:10.1111/j.1749-6632.2010.05544.x

15. Atmakusuma TD, Hasibuan FD, Purnamasari D. The Correlation Between Iron Overload and Endocrine Function in Adult Transfusion-Dependent Beta-Thalassemia Patients with Growth Retardation. J Blood Med. 2021;12:749-753. doi:10.2147/JBM.S325096

16. Skordis N, Kyriakou A. The multifactorial origin of growth failure in thalassaemia. Pediatr Endocrinol Rev. 2011;8 Suppl 2:271-277.

17. Nguyen NVN, Lam TM. Characteristics of Thalassemia at Can Tho Children’s Hospital from December 2010 to June 2011. HCMC J Med. 2012;16(1):51-56.

18. Pham TN, Nguyen DT. Clinical and paraclinical characteristics by disease type in pediatric thalassemia patients at Quang Ngai Obstetrics and Pediatrics Hospital. Vietnam Med J. 2022;2:517. doi:10.51298/vmj.v517i2.3243

19. Kyriakou A, Skordis N. Thalassaemia and Aberrations of Growth and Puberty. Mediterr J Hematol Infect Dis. 2009;1(1):e2009003. doi:10.4084/MJHID.2009.003

20. Surapolchai P, Songdej D, Hantaweepant C, et al. Thalassemia-related complications in pediatric, adolescent, and young adult patients with transfusion-dependent thalassemia: A multicenter study in Thailand. Pediatr Blood Cancer. 2023;70(10):e30599. doi:10.1002/pbc.30599

21. Brancaleoni V, Di Pierro E, Motta I, Cappellini MD. Laboratory diagnosis of thalassemia. Int J Lab Hematol. 2016;38 Suppl 1:32-40. doi:10.1111/ijlh.12527

22. Organization WH. Physical Status: The Use and Interpretation of Anthropometry: Report of a WHO Expert Committee. Tech Rep Ser. 1995;854:1-452.

23. Nutrition and Food Safety (NFS). World Health Organization Child Growth Standards: Length/Height-for-Age, Weight-for-Age, Weight-for-Length, Weight-for-Height and Body Mass Index-for-Age: Methods and Development. WHO Press; 2006. Accessed July 9, 2022. https://www.who.int/publications/i/item/924154693X

24. Leoni S, Buonfrate D, Angheben A, Gobbi F, Bisoffi Z. The hyper-reactive malarial splenomegaly: a systematic review of the literature. Malar J. 2015;14(1):185. doi:10.1186/s12936-015-0694-3

25. Amid A, Lal A, Coates TD, Fucharoen S, eds. Guidelines for the Management of α-Thalassaemia. Thalassaemia International Federation; 2023. PMID: 38556968

26. ABT Biotechnology. TopPURE Blood DNA Extraction KIT (HI-132). Vietnam: ABT Biotechnology; 2021. https://abtvn.com/en/product/toppure-blood-dna-extraction-kit/

27. Qiagen. Multiplex PCR Master Mix. Cat. No. 206143. 2021. https://www.qiagen.com/us/products/discovery-and-translational-research/pcr-qpcr-dpcr/pcr-enzymes-and-kits/end-point-pcr/qiagen-multiplex-pcr-kit

28. Chong SS, Boehm CD, Higgs DR, Cutting GR. Single-tube multiplex-PCR screen for common deletional determinants of alpha-thalassemia. Blood. 2000;95(1):360-362.

29. Bioline. HyperLadder 1kb. London, UK: Bioline; 2021. https://www.bioline.com/hyperladder-1kb.html

30. Luo HC, Luo QS, Huang FG, Wang CF, Wei YS. Impact of genotype on endocrinal complications of Children with Alpha-thalassemia in China. Sci Rep. 2017;7:2948. doi:10.1038/s41598-017-03029-9

31. De Sanctis V, Roos M, Gasser T, et al. Impact of long-term iron chelation therapy on growth and endocrine functions in thalassaemia. J Pediatr Endocrinol Metab. 2006;19(4):471-480. PMID: 16759032.

32. Kajanachumpol S, Tatu T, Sasanakul W, Chuansumrit A, Hathirat P. Zinc and copper status of thalassemic children. Southeast Asian J Trop Med Public Health. 1997;28(4):877-880. PMID: 9656419.

33. Imamoğlu S, Bereket A, Turan S, Taga Y, Haklar G. Effect of zinc supplementation on growth hormone secretion, IGF-I, IGFBP-3, somatomedin generation, alkaline phosphatase, osteocalcin and growth in prepubertal children with idiopathic short stature. J Pediatr Endocrinol Metab. 2005;18(1):69-74. doi:10.1515/jpem.2005.18.1.69

34. Arcasoy A, Canata D, Sinav B, Kutlay L, Oguz N, Sen M. Serum zinc levels and zinc binding capacity in thalassemia. J Trace Elem Med Biol. 2001;15(2-3):85-87. doi:10.1016/s0946-672x(01)80048-1

35. Soliman AT, Sanctis VD, Elalaily R, Yassin M. Insulin-like growth factor- I and factors affecting it in thalassemia major. Indian J Endocrinol Metab. 2015;19(2):245-251. doi:10.4103/2230-8210.131750

36. Moiz B, Habib A, Sawani S, Raheem A, Hasan B, Gangwani M. Anthropometric measurements in children having transfusion-dependent beta thalassemia. Hematology. 2018;23(4):248-252. doi:10.1080/10245332.2017.1396044

37. Farashi S, Harteveld CL. Molecular basis of α-thalassemia. Blood Cells Mol Dis. 2018;70:43-53. doi:10.1016/j.bcmd.2017.09.004

38. Charoenwijitkul T, Singha K, Fucharoen G, et al. Molecular characteristics of α+-thalassemia (3.7 kb deletion) in Southeast Asia: Molecular subtypes, haplotypic heterogeneity, multiple founder effects and laboratory diagnostics. Clin Biochem. 2019;71:31-37. doi:10.1016/j.clinbiochem.2019.06.005

39. Sadiq IZ, Abubakar FS, Usman HS, et al. Thalassemia: Pathophysiology, Diagnosis, and Advances in Treatment. Thalass Rep. 2024;14(4):81-102. doi:10.3390/thalassrep14040010

40. Szczałuba K, Obersztyn E, Nowakowska B, et al. [Alpha-thalassemia/mental retardation syndrome (ATR-X) in two brothers - clinical characteristics, diagnostics and genetic counselling issues]. Med Wieku Rozwoj. 2011;15(4):437-444. PMID: 22516698.

41. Amid A, Chen S, Brien W, Kirby-Allen M, Odame I. Optimizing chronic transfusion therapy for survivors of hemoglobin Barts hydrops fetalis. Blood. 2016;127(9):1208-1211. doi:10.1182/blood-2015-10-673889

42. Blackburn CR. On the clinical detection of enlargement of the spleen. Australas Ann Med. 1953;2(1):78-80. doi:10.1111/imj.1953.2.1.78

43. Hunnuan I, Sanpkit K, Lertbannaphong O, Buaboonnam J. Hemoglobin H Disease and Growth: A Comparative Study of DHbH and NDHbH Patients. Mediterr J Hematol Infect Dis. 2023;15(1):e2023045. doi:10.4084/MJHID.2023.045

44. Katal S, Mahajan S, Pandita P, et al. Splenomegaly and Cholelithiasis in Patients with Thalassemia Major and Thalassemia Intermedia. Int J Pharm Clin Res. 2023;15(10):650-655.

45. Williams, Maitland, Martin, Weatherall, Clegg. Splenic size in homozygous α+ thalassaemia. Br J Haematol. 1998;100(3):611-612. doi:10.1046/j.1365-2141.1998.0636h.x

46. Lal A, Goldrich ML, Haines DA, Azimi M, Singer ST, Vichinsky EP. Heterogeneity of hemoglobin H disease in childhood. N Engl J Med. 2011;364(8):710-718. doi:10.1056/NEJMoa1010174

47. Singer ST, Kim HY, Olivieri NF, et al. Hemoglobin H-constant spring in North America: an alpha thalassemia with frequent complications. Am J Hematol. 2009;84(11):759-761. doi:10.1002/ajh.21523

48. Wasi P, Na-Nakorn S, Pootrakul S, et al. Alpha- and beta-thalassemia in Thailand. Ann N Y Acad Sci. 1969;165(1):60-82. doi:10.1111/j.1749-6632.1969.tb27777.x

49. Songdej D, Tandhansakul M, Wongwerawattanakoon P, Sirachainan N, Charoenkwan P, Chuansumrit A. Severity scoring system to guide transfusion management in pediatric non-deletional HbH. Pediatr Int. 2023;65(1):e15568. doi:10.1111/ped.15568

Downloads

How to Cite

1.
Bui NQ, Tran NB, Ta TV, et al. Nomogram-based prediction of growth retardation in pediatric deletional α-thalassemia: Evidence from the Mekong Delta, Vietnam. Acta Biomed. 96(2):16872. doi:10.23750/abm.v96i2.16872

Issue

Section

PEDIATRICS AND ADOLESCENT MEDICINE

How to Cite

1.
Bui NQ, Tran NB, Ta TV, et al. Nomogram-based prediction of growth retardation in pediatric deletional α-thalassemia: Evidence from the Mekong Delta, Vietnam. Acta Biomed. 96(2):16872. doi:10.23750/abm.v96i2.16872