Indoor living environments: The VITALITY project in the Marche region (Italy) – integrating sensors and utilities for climatic-environmental monitoring to promote human health
Keywords:
environmental monitoring, healthy environments , indoor environments, health, well-being, sensorsAbstract
Background and aim: The integration of sensor-based systems in living environments and microenvironments, both indoor and outdoor, represents a brilliant approach for the continuous and real-time collection of data on climatic-environmental variables (such as air temperature, relative humidity, air velocity, volatile organic compounds, and CO₂). These data are instrumental in supporting decision-making processes to prevent and mitigate negative environmental impacts, particularly in highly vulnerable urban contexts.
Methods: This paper outlines the research design, objectives, and progress of the Italian PNRR VITALITY Project, SPOKE 6, WP 1.4, titled “Well-being Conditions Between Indoor and Outdoor Spaces”. Specifically, the study focuses on an in-depth analysis of selected indoor climatic-environmental variables that influence human health. Environmental data will be acquired through sensors, processed, and recorded on a digital platform, and integrated into a utility designed for users in three experimental investigation areas (three distinct urban contexts in central Italy, within the Marche Region).
Results: Operational phases are scheduled to commence by the end of 2025.
Conclusions: This type of monitoring enables a deeper and context-specific understanding of environmental conditions, providing essential information for the analysis of risk factors and the safeguarding and promotion of well-being and health (www.actabiomedica.it).
References
1. Pruszyński J, Cianciara D, Włodarczyk-Pruszyńska I, Górczak M, Padzińska-Pruszyńska I. Indoor Generation Era. Risks and challenges. J Educ Health Sport. 2023;48:23–40. https://doi.org/10.12775/JEHS.2023.48.01.002.
2. VELUX Group. Future generations face health risks from life indoors; 2018. http://bit.ly/2IiGee8.
3. Schweizer C, Edwards RD, Bayer-Oglesby L, et al. Indoor time-microenvironment-activity patterns in seven regions of Europe. J Expo Sci Environ Epidemiol. 2007;17:170–81. https://doi.org/10.1038/sj.jes.7500490.
4. Bruinen de Bruin Y, Koistinen K, Kephalopoulos S, Geiss O, Tirendi S, Kotzias D. Characterisation of urban inhalation exposures to benzene, formaldehyde and acetaldehyde in the European Union: comparison of measured and modelled exposure data. Environ Sci Pollut Res Int. 2008;15:417–30. https://doi.org/10.1007/s11356-008-0013-4.
5. Tham S, Thompson R, Landeg O, Murray KA, Waite T. Indoor temperature and health: a global systematic review. Public Health. 2020;179:9–17. https://doi.org/10.1016/j.puhe.2019.09.005.
6. Oleari F, Maroni M, Zapponi GA, et al. Piano Nazionale di Prevenzione per la Tutela e la Promozione della Salute degli Ambienti Confinati. Relazione per il Ministro; 2000. [Italian].
7. Mavrogianni A, Johnson F, Ucci M, et al. Historic Variations in Winter Indoor Domestic Temperatures and Potential Implications for Body Weight Gain. Indoor Built Environ. 2013;22:360–75. https://doi.org/10.1177/1420326X11425966.
8. Lepore A, Ubaldi V, Brini S. Inquinamento Indoor: aspetti generali e casi studio in Italia - Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA); 2010. [Italian].
9. Settimo G, D’Alessandro D. Orientamenti normativi comunitari sulla qualità dell’aria indoor: quali proposte per l’Italia [European community guidelines and standards in indoor air quality: what proposals for Italy]. Epidemiol Prev. 2014 Nov-Dec;38(6 Suppl 2):36-41. [Italian]. PMID: 25759341.
10. Vimal R. The impact of the Covid-19 lockdown on the human experience of nature. Sci Total Environ. 2022;803:149571. https://doi.org/10.1016/j.scitotenv.2021.149571.
11. Lim MA. Exercise addiction and COVID-19-associated restrictions. J Ment Health Abingdon Engl. 2021;30:135–7. https://doi.org/10.1080/09638237.2020.1803234.
12. Samet JM, Spengler JD. Indoor Environments and Health: Moving Into the 21st Century. Am J Public Health. 2003;93:1489–93. https://doi.org/10.2105/ajph.93.9.1489.
13. Acito M, Natalucci V, Rondini T, et al. The DianaWeb cohort during the first COVID-19 lockdown: changes in eating behaviour in women with breast cancer. Acta Biomed. 2023 Aug 30;94(S3):e2023135. doi: 10.23750/abm.v94iS3.14285.
14. Acito M, Rondini T, Gargano G, Moretti M, Villarini M, Villarini A. How the COVID-19 pandemic has affected eating habits and physical activity in breast cancer survivors: the DianaWeb study. J Cancer Surviv. 2023 Aug;17(4):974-985. doi: 10.1007/s11764-022-01294-w.
15. Scuri S, Tesauro M, Petrelli F, et al. Use of an Online Platform to Evaluate the Impact of Social Distancing Measures on Psycho-Physical Well-Being in the COVID-19 Era. Int J Environ Res Public Health. 2022;19:6805. https://doi.org/10.3390/ijerph19116805.
16. Liu G, Chen H, Yuan Y, Song C. Indoor thermal environment and human health: A systematic review. Renew Sustain Energy Rev. 2024;191:114164. https://doi.org/10.1016/j.rser.2023.114164.
17. Barreca A, Clay K, Deschenes O, Greenstone M, Shapiro JS. Adapting to Climate Change: The Remarkable Decline in the US Temperature-Mortality Relationship over the Twentieth Century. J Polit Econ. 2016;124:105–59. https://doi.org/10.1086/684582.
18. Mendell MJ, Mirer AG. Indoor thermal factors and symptoms in office workers: findings from the US EPA BASE study. Indoor Air. 2009;19:291–302. https://doi.org/10.1111/j.1600-0668.2009.00592.x.
19. EN 15251:2007. Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics; 2007.
20. Coccia L, Cipolletti S, Corvaro G. Green Room – An architectural and urban device for energy efficiency and environmental comfort. AGATHÓN Int J Archit Art Des. 2024;15:238–51. https://doi.org/10.19229/2464-9309/15192024.
21. Gentili B, Materazzi M, Aringoli D. Aspetti morfoevolutivi del settore periadriatico marchigiano-abruzzese (Italia centrale). Erosione idrica in ambiente mediterraneo: valutazione diretta e indiretta in aree sperimentali e bacini idrografici. Genova: Brigati; 2006, p. 159–75. [Italian].
22. Regione Marche - Assemblea Legislativa. Piano Regionale di Adattamento al Cambiamento Climatico (PRACC) ai sensi dell’Azione B.5.1 della Deliberazione dell’Assemblea Legislativa n. 25 del 13 dicembre 2021; 2025. [Italian].
23. ASHRAE. Standard 55-2023 - Thermal Environmental Conditions for Human Occupancy; 2023.
24. ISO 7730:2005. Ergonomics of the thermal environment — Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria; 2005.
25. World Health Organization. WHO Housing and Health Guidelines; 2018. https://www.who.int/publications/i/item/9789241550376.
26. Liu J, Varghese BM, Hansen A, et al. Heat exposure and cardiovascular health outcomes: a systematic review and meta-analysis. Lancet Planet Health. 2022;6:e484–95. https://doi.org/10.1016/S2542-5196(22)00117-6.
27. Christoforou R, Pallubinsky H, Burgholz TM, et al. Influences of Indoor Air Temperatures on Empathy and Positive Affect. Int J Environ Res Public Health. 2024;21:323. https://doi.org/10.3390/ijerph21030323.
28. Liu J, Varghese BM, Hansen A, et al. Is there an association between hot weather and poor mental health outcomes? A systematic review and meta-analysis. Environ Int. 2021;153:106533. https://doi.org/10.1016/j.envint.2021.106533.
29. Redlich CA, Sparer J, Cullen MR. Sick-building syndrome. Lancet Lond Engl. 1997;349:1013–6. https://doi.org/10.1016/S0140-6736(96)07220-0.
30. D’Amato M, Molino A, Calabrese G, Cecchi L, Annesi-Maesano I, D’Amato G. The impact of cold on the respiratory tract and its consequences to respiratory health. Clin Transl Allergy. 2018 May 30;8:20. doi: 10.1186/s13601-018-0208-9.
31. Luo Q, Li S, Guo Y, Han X, Jaakkola JJK. A systematic review and meta-analysis of the association between daily mean temperature and mortality in China. Environ Res. 2019 Jun;173:281-299. doi: 10.1016/j.envres.2019.03.044.
32. Collins KJ. Low indoor temperatures and morbidity in the elderly. Age Ageing. 1986;15:212–20. https://doi.org/10.1093/ageing/15.4.212.
33. Gronlund CJ, Ketenci KC, Reames TG, et al. Indoor apparent temperature, cognition, and daytime sleepiness among low-income adults in a temperate climate. Indoor Air. 2022;32:e12972. https://doi.org/10.1111/ina.12972.
34. Zhao Q, Guo Y, Ye T, et al. Global, regional, and national burden of mortality associated with non-optimal ambient temperatures from 2000 to 2019: a three-stage modelling study. Lancet Planet Health. 2021;5:e415–25. https://doi.org/10.1016/S2542-5196(21)00081-4.
35. Ballester J, Quijal-Zamorano M, Méndez Turrubiates RF, et al. Heat-related mortality in Europe during the summer of 2022. Nat Med. 2023;29:1857–66. https://doi.org/10.1038/s41591-023-02419-z.
36. Ebi KL, Capon A, Berry P, et al. Hot weather and heat extremes: health risks. Lancet Lond Engl. 2021;398:698–708. https://doi.org/10.1016/S0140-6736(21)01208-3.
37. Haleem Khan AA, Mohan Karuppayil S. Fungal pollution of indoor environments and its management. Saudi J Biol Sci. 2012;19:405–26. https://doi.org/10.1016/j.sjbs.2012.06.002.
38. Brunekreef B. Damp housing and adult respiratory symptoms. Allergy. 1992;47:498–502. https://doi.org/10.1111/j.1398-9995.1992.tb00672.x.
39. Wolkoff P. Indoor air humidity, air quality, and health - An overview. Int J Hyg Environ Health 2018;221:376–90. https://doi.org/10.1016/j.ijheh.2018.01.015.
40. Simoni M, Lombardi E, Berti G, et al. Mould/dampness exposure at home is associated with respiratory disorders in Italian children and adolescents: the SIDRIA-2 Study. Occup Environ Med. 2005;62:616–22. https://doi.org/10.1136/oem.2004.018291.
41. Ferrante G, Malizia V, Antona R, Montalbano L, La Grutta S. Esposizione ad inquinanti ambientali e rischio di allergie nel bambino. Riv Immunol e Allergol Pediatr. 2013;03:8–13.
42. Mezzoiuso AG, Gola M, Rebecchi A, et al. Indoors and health: results of a systematic literature review assessing the potential health effects of living in basements. Acta Biomed. 2017 Oct 23;88(3):375-382. doi: 10.23750/abm.v88i3.6741.
43. Wolkoff P. Indoor air humidity revisited: Impact on acute symptoms, work productivity, and risk of influenza and COVID-19 infection. Int J Hyg Environ Health. 2024;256:114313. https://doi.org/10.1016/j.ijheh.2023.114313.
44. Nishi Y, Gagge AP. Effective temperature scale useful for hypo- and hyperbaric environments. Aviat Space Environ Med 1977;48:97–107.
45. Gong N, Tham KW, Melikov AK, Wyon DP, Sekhar SC, Cheong KW. The Acceptable Air Velocity Range for Local Air Movement in The Tropics. HVAC&R Research. 2006;12:1065–76. https://doi.org/10.1080/10789669.2006.10391451.
46. Zhu Y, Luo M, Ouyang Q, Huang L, Cao B. Dynamic characteristics and comfort assessment of airflows in indoor environments: A review. Build Environ. 2015;91:5–14. https://doi.org/10.1016/j.buildenv.2015.03.032.
47. Signorelli C, Capolongo S, Buffoli M, et al. Documento d’indirizzo della Società Italiana di Igiene (SItI) per una casa sana, sicura e sostenibile [Italian Society of Hygiene (SItI) recommendations for a healthy, safe and sustainable housing]. Epidemiol Prev. 2016 Mar-Apr;40(3-4):265-70. [Italian]. doi: 10.19191/EP16.3-4.P265.094.
48. Luo M, Yu J, Ouyang Q, Cao B, Zhu Y. Application of dynamic airflows in buildings and its effects on perceived thermal comfort. Indoor Built Environ. 2018;27:1162–74. https://doi.org/10.1177/1420326X17702520.
49. Toftum J, Nielsen R. Draught sensitivity is influenced by general thermal sensation. Int J Ind Ergon. 1996;18:295–305. https://doi.org/10.1016/0169-8141(95)00070-4.
50. Santiago Sánchez N, Tejada Alarcón S, Tortajada Santonja R, Llorca-Pórcel J. New device for time-averaged measurement of volatile organic compounds (VOCs). Sci Total Environ. 2014 Jul 1;485-486:720-725. doi: 10.1016/j.scitotenv.2013.12.019.
51. Tsai W-T. An overview of health hazards of volatile organic compounds regulated as indoor air pollutants. Rev Environ Health. 2019;34:81–9. https://doi.org/10.1515/reveh-2018-0046.
52. European collaborative action “Indoor air quality and its impact on man” (formerly COST project 613). Biological particles in indoor environments; 1993.
53. Besis A, Katsaros T, Samara C. Concentrations of volatile organic compounds in vehicular cabin air - Implications to commuter exposure. Environ Pollut. 2023 Aug 1;330:121763. doi: 10.1016/j.envpol.2023.121763.
54. Italian Government. Decreto Legislativo 3 aprile 2006, n. 152. Norme in materia ambientale. Parte Quinta - Norme in materia di tutela dell’aria e di riduzione delle emissioni in atmosfera. Art. 275 - Emissioni di COV; 2006. [Italian].
55. Adams K, Greenbaum DS, Shaikh R, van Erp AM, Russell AG. Particulate matter components, sources, and health: Systematic approaches to testing effects. J Air Waste Manag Assoc. 2015 May;65(5):544-58. doi: 10.1080/10962247.2014.1001884.
56. Zhang L, Ou C, Magana-Arachchi D, et al. Indoor Particulate Matter in Urban Households: Sources, Pathways, Characteristics, Health Effects, and Exposure Mitigation. Int J Environ Res Public Health. 2021;18:11055. https://doi.org/10.3390/ijerph182111055.
57. Nasir ZA, Colbeck I. Particulate pollution in different housing types in a UK suburban location. Sci Total Environ. 2013;445–446:165–76. https://doi.org/10.1016/j.scitotenv.2012.12.042.
58. Jones RR, Hogrefe C, Fitzgerald EF, et al. Respiratory hospitalizations in association with fine PM and its components in New York State. J Air Waste Manag Assoc. 2015 May;65(5):559-69. doi: 10.1080/10962247.2014.1001500.
59. Ostro B, Roth L, Malig B, Marty M. The effects of fine particle components on respiratory hospital admissions in children. Environ Health Perspect. 2009;117:475–80. https://doi.org/10.1289/ehp.11848.
60. Pope CA 3rd, Burnett RT, Thurston GD, et al. Cardiovascular mortality and long-term exposure to particulate air pollution: epidemiological evidence of general pathophysiological pathways of disease. Circulation. 2004;109:71–7. https://doi.org/10.1161/01.CIR.0000108927.80044.7F.
61. Pope CA 3rd. What do epidemiologic findings tell us about health effects of environmental aerosols? J Aerosol Med Off J Int Soc Aerosols Med. 2000;13:335–54. https://doi.org/10.1089/jam.2000.13.335.
62. Pinheiro Sde L, Saldiva PH, Schwartz J, Zanobetti A. Isolated and synergistic effects of PM10 and average temperature on cardiovascular and respiratory mortality. Rev Saude Publica. 2014 Dec;48(6):881-8. doi: 10.1590/S0034-8910.2014048005218.
63. EpiCentro. Qualità dell’aria in Europa: la direttiva UE 2024; 2024. [Italian]. https://www.epicentro.iss.it/ambiente/direttiva-ue-qualita-aria-2024.
64. EpiCentro. Qualità dell’aria: le nuove linee guida dell’OMS; 2021. [Italian]. https://www.epicentro.iss.it/ambiente/qualita-aria-linee-guida-oms-2021.
65. World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; 2021. https://www.who.int/publications/i/item/9789240034228.
66. Schraufnagel DE. The health effects of ultrafine particles. Exp Mol Med. 2020;52:311–7. https://doi.org/10.1038/s12276-020-0403-3.
67. Satish U, Mendell MJ, Shekhar K, et al. Is CO2 an indoor pollutant? Direct effects of low-to-moderate CO2 concentrations on human decision-making performance. Environ Health Perspect. 2012;120:1671–7. https://doi.org/10.1289/ehp.1104789.
68. Azuma K, Kagi N, Yanagi U, Osawa H. Effects of low-level inhalation exposure to carbon dioxide in indoor environments: A short review on human health and psychomotor performance. Environ Int. 2018;121:51–6. https://doi.org/10.1016/j.envint.2018.08.059.
69. Mitteilungen der Ad-hoc-Arbeitsgruppe Innenraumrichtwerte der Innenraumlufthygiene-Kommission des Umweltbundesamtes und der Obersten Landesgesundheitsbehörden. [Health evaluation of carbon dioxide in indoor air]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2008;51:1358–69. [German]. https://doi.org/10.1007/s00103-008-0707-2.
70. Tillett T. Don’t hold your breath: indoor CO2 exposure and impaired decision making. Environ Health Perspect. 2012;120:A475. https://doi.org/10.1289/ehp.120-a475a.
71. World Health Organization. Constitution of the World Health Organization; 1948. https://www.who.int/about/governance/constitution.
72. World Health Organization. First International Conference on Health Promotion, Ottawa, 21 November 1986; 1986. https://www.who.int/teams/health-promotion/enhanced-wellbeing/first-global-conference.
73. Paniccià M, Acito M, Grappasonni I. How outdoor and indoor green spaces affect human health: a literature review. Ann Ig. 2025;37:333–49. https://doi.org/10.7416/ai.2024.2654.
74. Chojer H, Branco PTBS, Martins FG, Alvim-Ferraz MCM, Sousa SIV. Development of low-cost indoor air quality monitoring devices: Recent advancements. Sci Total Environ. 2020;727:138385. https://doi.org/10.1016/j.scitotenv.2020.138385.
75. Saini J, Dutta M, Marques G. Indoor Air Quality Monitoring Systems Based on Internet of Things: A Systematic Review. Int J Environ Res Public Health. 2020;17:4942. https://doi.org/10.3390/ijerph17144942.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Marco Paniccià, Mattia Acito, Iolanda Grappasonni

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Transfer of Copyright and Permission to Reproduce Parts of Published Papers.
Authors retain the copyright for their published work. No formal permission will be required to reproduce parts (tables or illustrations) of published papers, provided the source is quoted appropriately and reproduction has no commercial intent. Reproductions with commercial intent will require written permission and payment of royalties.