Indoor living environments: The VITALITY project in the Marche region (Italy) – integrating sensors and utilities for climatic-environmental monitoring to promote human health

Indoor living environments: The VITALITY project in the Marche region (Italy) – integrating sensors and utilities for climatic-environmental monitoring to promote human health

Authors

Keywords:

environmental monitoring, healthy environments , indoor environments, health, well-being, sensors

Abstract

Background and aim: The integration of sensor-based systems in living environments and microenvironments, both indoor and outdoor, represents a brilliant approach for the continuous and real-time collection of data on climatic-environmental variables (such as air temperature, relative humidity, air velocity, volatile organic compounds, and CO₂). These data are instrumental in supporting decision-making processes to prevent and mitigate negative environmental impacts, particularly in highly vulnerable urban contexts.

Methods: This paper outlines the research design, objectives, and progress of the Italian PNRR VITALITY Project, SPOKE 6, WP 1.4, titled “Well-being Conditions Between Indoor and Outdoor Spaces”. Specifically, the study focuses on an in-depth analysis of selected indoor climatic-environmental variables that influence human health. Environmental data will be acquired through sensors, processed, and recorded on a digital platform, and integrated into a utility designed for users in three experimental investigation areas (three distinct urban contexts in central Italy, within the Marche Region).

Results: Operational phases are scheduled to commence by the end of 2025.

Conclusions: This type of monitoring enables a deeper and context-specific understanding of environmental conditions, providing essential information for the analysis of risk factors and the safeguarding and promotion of well-being and health (www.actabiomedica.it).

References

1. Pruszyński J, Cianciara D, Włodarczyk-Pruszyńska I, Górczak M, Padzińska-Pruszyńska I. Indoor Generation Era. Risks and challenges. J Educ Health Sport. 2023;48:23–40. https://doi.org/10.12775/JEHS.2023.48.01.002.

2. VELUX Group. Future generations face health risks from life indoors; 2018. http://bit.ly/2IiGee8.

3. Schweizer C, Edwards RD, Bayer-Oglesby L, et al. Indoor time-microenvironment-activity patterns in seven regions of Europe. J Expo Sci Environ Epidemiol. 2007;17:170–81. https://doi.org/10.1038/sj.jes.7500490.

4. Bruinen de Bruin Y, Koistinen K, Kephalopoulos S, Geiss O, Tirendi S, Kotzias D. Characterisation of urban inhalation exposures to benzene, formaldehyde and acetaldehyde in the European Union: comparison of measured and modelled exposure data. Environ Sci Pollut Res Int. 2008;15:417–30. https://doi.org/10.1007/s11356-008-0013-4.

5. Tham S, Thompson R, Landeg O, Murray KA, Waite T. Indoor temperature and health: a global systematic review. Public Health. 2020;179:9–17. https://doi.org/10.1016/j.puhe.2019.09.005.

6. Oleari F, Maroni M, Zapponi GA, et al. Piano Nazionale di Prevenzione per la Tutela e la Promozione della Salute degli Ambienti Confinati. Relazione per il Ministro; 2000. [Italian].

7. Mavrogianni A, Johnson F, Ucci M, et al. Historic Variations in Winter Indoor Domestic Temperatures and Potential Implications for Body Weight Gain. Indoor Built Environ. 2013;22:360–75. https://doi.org/10.1177/1420326X11425966.

8. Lepore A, Ubaldi V, Brini S. Inquinamento Indoor: aspetti generali e casi studio in Italia - Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA); 2010. [Italian].

9. Settimo G, D’Alessandro D. Orientamenti normativi comunitari sulla qualità dell’aria indoor: quali proposte per l’Italia [European community guidelines and standards in indoor air quality: what proposals for Italy]. Epidemiol Prev. 2014 Nov-Dec;38(6 Suppl 2):36-41. [Italian]. PMID: 25759341.

10. Vimal R. The impact of the Covid-19 lockdown on the human experience of nature. Sci Total Environ. 2022;803:149571. https://doi.org/10.1016/j.scitotenv.2021.149571.

11. Lim MA. Exercise addiction and COVID-19-associated restrictions. J Ment Health Abingdon Engl. 2021;30:135–7. https://doi.org/10.1080/09638237.2020.1803234.

12. Samet JM, Spengler JD. Indoor Environments and Health: Moving Into the 21st Century. Am J Public Health. 2003;93:1489–93. https://doi.org/10.2105/ajph.93.9.1489.

13. Acito M, Natalucci V, Rondini T, et al. The DianaWeb cohort during the first COVID-19 lockdown: changes in eating behaviour in women with breast cancer. Acta Biomed. 2023 Aug 30;94(S3):e2023135. doi: 10.23750/abm.v94iS3.14285.

14. Acito M, Rondini T, Gargano G, Moretti M, Villarini M, Villarini A. How the COVID-19 pandemic has affected eating habits and physical activity in breast cancer survivors: the DianaWeb study. J Cancer Surviv. 2023 Aug;17(4):974-985. doi: 10.1007/s11764-022-01294-w.

15. Scuri S, Tesauro M, Petrelli F, et al. Use of an Online Platform to Evaluate the Impact of Social Distancing Measures on Psycho-Physical Well-Being in the COVID-19 Era. Int J Environ Res Public Health. 2022;19:6805. https://doi.org/10.3390/ijerph19116805.

16. Liu G, Chen H, Yuan Y, Song C. Indoor thermal environment and human health: A systematic review. Renew Sustain Energy Rev. 2024;191:114164. https://doi.org/10.1016/j.rser.2023.114164.

17. Barreca A, Clay K, Deschenes O, Greenstone M, Shapiro JS. Adapting to Climate Change: The Remarkable Decline in the US Temperature-Mortality Relationship over the Twentieth Century. J Polit Econ. 2016;124:105–59. https://doi.org/10.1086/684582.

18. Mendell MJ, Mirer AG. Indoor thermal factors and symptoms in office workers: findings from the US EPA BASE study. Indoor Air. 2009;19:291–302. https://doi.org/10.1111/j.1600-0668.2009.00592.x.

19. EN 15251:2007. Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics; 2007.

20. Coccia L, Cipolletti S, Corvaro G. Green Room – An architectural and urban device for energy efficiency and environmental comfort. AGATHÓN Int J Archit Art Des. 2024;15:238–51. https://doi.org/10.19229/2464-9309/15192024.

21. Gentili B, Materazzi M, Aringoli D. Aspetti morfoevolutivi del settore periadriatico marchigiano-abruzzese (Italia centrale). Erosione idrica in ambiente mediterraneo: valutazione diretta e indiretta in aree sperimentali e bacini idrografici. Genova: Brigati; 2006, p. 159–75. [Italian].

22. Regione Marche - Assemblea Legislativa. Piano Regionale di Adattamento al Cambiamento Climatico (PRACC) ai sensi dell’Azione B.5.1 della Deliberazione dell’Assemblea Legislativa n. 25 del 13 dicembre 2021; 2025. [Italian].

23. ASHRAE. Standard 55-2023 - Thermal Environmental Conditions for Human Occupancy; 2023.

24. ISO 7730:2005. Ergonomics of the thermal environment — Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria; 2005.

25. World Health Organization. WHO Housing and Health Guidelines; 2018. https://www.who.int/publications/i/item/9789241550376.

26. Liu J, Varghese BM, Hansen A, et al. Heat exposure and cardiovascular health outcomes: a systematic review and meta-analysis. Lancet Planet Health. 2022;6:e484–95. https://doi.org/10.1016/S2542-5196(22)00117-6.

27. Christoforou R, Pallubinsky H, Burgholz TM, et al. Influences of Indoor Air Temperatures on Empathy and Positive Affect. Int J Environ Res Public Health. 2024;21:323. https://doi.org/10.3390/ijerph21030323.

28. Liu J, Varghese BM, Hansen A, et al. Is there an association between hot weather and poor mental health outcomes? A systematic review and meta-analysis. Environ Int. 2021;153:106533. https://doi.org/10.1016/j.envint.2021.106533.

29. Redlich CA, Sparer J, Cullen MR. Sick-building syndrome. Lancet Lond Engl. 1997;349:1013–6. https://doi.org/10.1016/S0140-6736(96)07220-0.

30. D’Amato M, Molino A, Calabrese G, Cecchi L, Annesi-Maesano I, D’Amato G. The impact of cold on the respiratory tract and its consequences to respiratory health. Clin Transl Allergy. 2018 May 30;8:20. doi: 10.1186/s13601-018-0208-9.

31. Luo Q, Li S, Guo Y, Han X, Jaakkola JJK. A systematic review and meta-analysis of the association between daily mean temperature and mortality in China. Environ Res. 2019 Jun;173:281-299. doi: 10.1016/j.envres.2019.03.044.

32. Collins KJ. Low indoor temperatures and morbidity in the elderly. Age Ageing. 1986;15:212–20. https://doi.org/10.1093/ageing/15.4.212.

33. Gronlund CJ, Ketenci KC, Reames TG, et al. Indoor apparent temperature, cognition, and daytime sleepiness among low-income adults in a temperate climate. Indoor Air. 2022;32:e12972. https://doi.org/10.1111/ina.12972.

34. Zhao Q, Guo Y, Ye T, et al. Global, regional, and national burden of mortality associated with non-optimal ambient temperatures from 2000 to 2019: a three-stage modelling study. Lancet Planet Health. 2021;5:e415–25. https://doi.org/10.1016/S2542-5196(21)00081-4.

35. Ballester J, Quijal-Zamorano M, Méndez Turrubiates RF, et al. Heat-related mortality in Europe during the summer of 2022. Nat Med. 2023;29:1857–66. https://doi.org/10.1038/s41591-023-02419-z.

36. Ebi KL, Capon A, Berry P, et al. Hot weather and heat extremes: health risks. Lancet Lond Engl. 2021;398:698–708. https://doi.org/10.1016/S0140-6736(21)01208-3.

37. Haleem Khan AA, Mohan Karuppayil S. Fungal pollution of indoor environments and its management. Saudi J Biol Sci. 2012;19:405–26. https://doi.org/10.1016/j.sjbs.2012.06.002.

38. Brunekreef B. Damp housing and adult respiratory symptoms. Allergy. 1992;47:498–502. https://doi.org/10.1111/j.1398-9995.1992.tb00672.x.

39. Wolkoff P. Indoor air humidity, air quality, and health - An overview. Int J Hyg Environ Health 2018;221:376–90. https://doi.org/10.1016/j.ijheh.2018.01.015.

40. Simoni M, Lombardi E, Berti G, et al. Mould/dampness exposure at home is associated with respiratory disorders in Italian children and adolescents: the SIDRIA-2 Study. Occup Environ Med. 2005;62:616–22. https://doi.org/10.1136/oem.2004.018291.

41. Ferrante G, Malizia V, Antona R, Montalbano L, La Grutta S. Esposizione ad inquinanti ambientali e rischio di allergie nel bambino. Riv Immunol e Allergol Pediatr. 2013;03:8–13.

42. Mezzoiuso AG, Gola M, Rebecchi A, et al. Indoors and health: results of a systematic literature review assessing the potential health effects of living in basements. Acta Biomed. 2017 Oct 23;88(3):375-382. doi: 10.23750/abm.v88i3.6741.

43. Wolkoff P. Indoor air humidity revisited: Impact on acute symptoms, work productivity, and risk of influenza and COVID-19 infection. Int J Hyg Environ Health. 2024;256:114313. https://doi.org/10.1016/j.ijheh.2023.114313.

44. Nishi Y, Gagge AP. Effective temperature scale useful for hypo- and hyperbaric environments. Aviat Space Environ Med 1977;48:97–107.

45. Gong N, Tham KW, Melikov AK, Wyon DP, Sekhar SC, Cheong KW. The Acceptable Air Velocity Range for Local Air Movement in The Tropics. HVAC&R Research. 2006;12:1065–76. https://doi.org/10.1080/10789669.2006.10391451.

46. Zhu Y, Luo M, Ouyang Q, Huang L, Cao B. Dynamic characteristics and comfort assessment of airflows in indoor environments: A review. Build Environ. 2015;91:5–14. https://doi.org/10.1016/j.buildenv.2015.03.032.

47. Signorelli C, Capolongo S, Buffoli M, et al. Documento d’indirizzo della Società Italiana di Igiene (SItI) per una casa sana, sicura e sostenibile [Italian Society of Hygiene (SItI) recommendations for a healthy, safe and sustainable housing]. Epidemiol Prev. 2016 Mar-Apr;40(3-4):265-70. [Italian]. doi: 10.19191/EP16.3-4.P265.094.

48. Luo M, Yu J, Ouyang Q, Cao B, Zhu Y. Application of dynamic airflows in buildings and its effects on perceived thermal comfort. Indoor Built Environ. 2018;27:1162–74. https://doi.org/10.1177/1420326X17702520.

49. Toftum J, Nielsen R. Draught sensitivity is influenced by general thermal sensation. Int J Ind Ergon. 1996;18:295–305. https://doi.org/10.1016/0169-8141(95)00070-4.

50. Santiago Sánchez N, Tejada Alarcón S, Tortajada Santonja R, Llorca-Pórcel J. New device for time-averaged measurement of volatile organic compounds (VOCs). Sci Total Environ. 2014 Jul 1;485-486:720-725. doi: 10.1016/j.scitotenv.2013.12.019.

51. Tsai W-T. An overview of health hazards of volatile organic compounds regulated as indoor air pollutants. Rev Environ Health. 2019;34:81–9. https://doi.org/10.1515/reveh-2018-0046.

52. European collaborative action “Indoor air quality and its impact on man” (formerly COST project 613). Biological particles in indoor environments; 1993.

53. Besis A, Katsaros T, Samara C. Concentrations of volatile organic compounds in vehicular cabin air - Implications to commuter exposure. Environ Pollut. 2023 Aug 1;330:121763. doi: 10.1016/j.envpol.2023.121763.

54. Italian Government. Decreto Legislativo 3 aprile 2006, n. 152. Norme in materia ambientale. Parte Quinta - Norme in materia di tutela dell’aria e di riduzione delle emissioni in atmosfera. Art. 275 - Emissioni di COV; 2006. [Italian].

55. Adams K, Greenbaum DS, Shaikh R, van Erp AM, Russell AG. Particulate matter components, sources, and health: Systematic approaches to testing effects. J Air Waste Manag Assoc. 2015 May;65(5):544-58. doi: 10.1080/10962247.2014.1001884.

56. Zhang L, Ou C, Magana-Arachchi D, et al. Indoor Particulate Matter in Urban Households: Sources, Pathways, Characteristics, Health Effects, and Exposure Mitigation. Int J Environ Res Public Health. 2021;18:11055. https://doi.org/10.3390/ijerph182111055.

57. Nasir ZA, Colbeck I. Particulate pollution in different housing types in a UK suburban location. Sci Total Environ. 2013;445–446:165–76. https://doi.org/10.1016/j.scitotenv.2012.12.042.

58. Jones RR, Hogrefe C, Fitzgerald EF, et al. Respiratory hospitalizations in association with fine PM and its components in New York State. J Air Waste Manag Assoc. 2015 May;65(5):559-69. doi: 10.1080/10962247.2014.1001500.

59. Ostro B, Roth L, Malig B, Marty M. The effects of fine particle components on respiratory hospital admissions in children. Environ Health Perspect. 2009;117:475–80. https://doi.org/10.1289/ehp.11848.

60. Pope CA 3rd, Burnett RT, Thurston GD, et al. Cardiovascular mortality and long-term exposure to particulate air pollution: epidemiological evidence of general pathophysiological pathways of disease. Circulation. 2004;109:71–7. https://doi.org/10.1161/01.CIR.0000108927.80044.7F.

61. Pope CA 3rd. What do epidemiologic findings tell us about health effects of environmental aerosols? J Aerosol Med Off J Int Soc Aerosols Med. 2000;13:335–54. https://doi.org/10.1089/jam.2000.13.335.

62. Pinheiro Sde L, Saldiva PH, Schwartz J, Zanobetti A. Isolated and synergistic effects of PM10 and average temperature on cardiovascular and respiratory mortality. Rev Saude Publica. 2014 Dec;48(6):881-8. doi: 10.1590/S0034-8910.2014048005218.

63. EpiCentro. Qualità dell’aria in Europa: la direttiva UE 2024; 2024. [Italian]. https://www.epicentro.iss.it/ambiente/direttiva-ue-qualita-aria-2024.

64. EpiCentro. Qualità dell’aria: le nuove linee guida dell’OMS; 2021. [Italian]. https://www.epicentro.iss.it/ambiente/qualita-aria-linee-guida-oms-2021.

65. World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (‎PM2.5 and PM10)‎, Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; 2021. https://www.who.int/publications/i/item/9789240034228.

66. Schraufnagel DE. The health effects of ultrafine particles. Exp Mol Med. 2020;52:311–7. https://doi.org/10.1038/s12276-020-0403-3.

67. Satish U, Mendell MJ, Shekhar K, et al. Is CO2 an indoor pollutant? Direct effects of low-to-moderate CO2 concentrations on human decision-making performance. Environ Health Perspect. 2012;120:1671–7. https://doi.org/10.1289/ehp.1104789.

68. Azuma K, Kagi N, Yanagi U, Osawa H. Effects of low-level inhalation exposure to carbon dioxide in indoor environments: A short review on human health and psychomotor performance. Environ Int. 2018;121:51–6. https://doi.org/10.1016/j.envint.2018.08.059.

69. Mitteilungen der Ad-hoc-Arbeitsgruppe Innenraumrichtwerte der Innenraumlufthygiene-Kommission des Umweltbundesamtes und der Obersten Landesgesundheitsbehörden. [Health evaluation of carbon dioxide in indoor air]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2008;51:1358–69. [German]. https://doi.org/10.1007/s00103-008-0707-2.

70. Tillett T. Don’t hold your breath: indoor CO2 exposure and impaired decision making. Environ Health Perspect. 2012;120:A475. https://doi.org/10.1289/ehp.120-a475a.

71. World Health Organization. Constitution of the World Health Organization; 1948. https://www.who.int/about/governance/constitution.

72. World Health Organization. First International Conference on Health Promotion, Ottawa, 21 November 1986; 1986. https://www.who.int/teams/health-promotion/enhanced-wellbeing/first-global-conference.

73. Paniccià M, Acito M, Grappasonni I. How outdoor and indoor green spaces affect human health: a literature review. Ann Ig. 2025;37:333–49. https://doi.org/10.7416/ai.2024.2654.

74. Chojer H, Branco PTBS, Martins FG, Alvim-Ferraz MCM, Sousa SIV. Development of low-cost indoor air quality monitoring devices: Recent advancements. Sci Total Environ. 2020;727:138385. https://doi.org/10.1016/j.scitotenv.2020.138385.

75. Saini J, Dutta M, Marques G. Indoor Air Quality Monitoring Systems Based on Internet of Things: A Systematic Review. Int J Environ Res Public Health. 2020;17:4942. https://doi.org/10.3390/ijerph17144942.

Downloads

Published

05-08-2025

Issue

Section

ORIGINAL CLINICAL RESEARCH

How to Cite

1.
Paniccià M, Acito M, Grappasonni I. Indoor living environments: The VITALITY project in the Marche region (Italy) – integrating sensors and utilities for climatic-environmental monitoring to promote human health. Acta Biomed. 2025;96(4):17161. doi:10.23750/abm.v96i4.17161