Prognostic accuracy of procalcitonin and other biomarkers in septic shock patient in PICU

Prognostic accuracy of procalcitonin and other biomarkers in septic shock patient in PICU

Authors

  • Frida Kurnia Pratama Child Health Department, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
  • Arina Setyaningtyas Child Health Department, Dr. Soetomo General Academic Hospital, Surabaya
  • Neurinda Permata Kusumastuti
  • Ira Dharmawati Child Health Department, Dr. Soetomo General Academic Hospital, Surabaya
  • Dwi Putri Lestari Child Health Department, Dr. Soetomo General Academic Hospital, Surabaya
  • Abdul Latief Azis Child Health Department, Dr. Soetomo General Academic Hospital, Surabaya

Keywords:

septic shock, sepsis, CRP, procalcitonin, CRP/albumin ratio, culture result

Abstract

Background and aim: Septic shock is one of the main causes of sepsis. Sepsis is a life-threatening acute systemic inflammatory response to infection. Many studies have tested the usefulness of biomarkers of sepsis prognosis in PICU patients. This study aims to prove that CRP, procalcitonin, CRP/albumin ratio, and culture results, are prognostic markers of mortality in pediatric sepsis shock patients.

Methods: A retrospective with cross-sectional study design using the medical records of critically ill children with septic shock aged 1 month to 18 years, admitted to the PICU of Dr. Soetomo Hospital from February 2022 to July 2023. The inclusion criteria were patient with sepsis shock were reviewed for laboratory results and clinical conditions from the time of admission until 30 days after PICU treatment. Patients with incomplete data, patients with AKI stage failure or loss, chronic renal failure, autoimmune diseases, malignancy, trauma (burns, fractures, surgery), heart disease, and HIV patients could not participate in the study.

Results: A total of ninety-six medical records of critically ill sepsis patients in PICU were observed, only 69 patients were followed up, and 27 patients were excluded. A total of 33 (47.8%) patients died, most patients died in the age group of 1-12 months (51.5%) and male (81.9%). There was a significant association between sex and mortality in septic shock children, with being female increases the chance to survive by 3.600-time, 95% CI [1.196010.838], P=0.023. There was a significant association between PCT levels and mortality of sepsis shock patients (P=0.041). There was no significant difference between CRP levels, CRP/albumin ratio (CAR), and culture results with patient mortality status.

Conclusions: Procalcitonin is superior as a prognostic biomarker of mortality in critically ill patients with sepsis shock, compared to CRP, CRP/albumin ratio, and culture. 

References

1. Emr BM, Alcamo AM, Carcillo JA, Aneja RK, Mollen KP. Pediatric sepsis update: how are children different? Surg Infect (Larchmt). 2018;19(2):176-183. doi: 10.1089/sur.2017.316.

2. Garcia PCR, Tonial CT, Piva JP. Septic shock in pediatrics: the state of the art. J Pediatr (Rio J). 2020;96(S1):87-98. doi: 10.1016/j.jped.2019.10.007.

3. Purba AKR, Mariana N, Aliska G, et al. The burden and costs of sepsis and reimbursement of its treatment in a developing country: an observational study on focal infections in Indonesia. Int J Infect Dis. 2020;96:211-218. doi: 10.1016/j.ijid.2020.04.075.

4. Purba AKR, Mariana N, Gestina A, et al. National burden of sepsis in Indonesia: an analysis based on focal infections. Value in Health. 2019;S655. doi: 10.1016/j.jval.2019.09.1339.

5. Ganda IJ, Karjana, Daud D. Association between sepsis-induced acute kidney injury with shock and length of stay in critically ill pediatric patients. Curr Pediatr Res. 2019;23(2):64-70.

6. Permpikul C, Sivakorn C, Tongyoo S. In-hospital death after septic shock reversal: a retrospective analysis of in-hospital death among septic shock survivors at Thailand's largest national tertiary referral center. Am J Trop Med Hyg. 2021;104(1):395-402. doi: 10.4269/ajtmh.20-0896.

7. Steingrub J, Nathanson BH, Lagu T, Rothberg MB, Lindenauer PK. Effect of neuromuscular blockers on mortality in patients with severe sepsis. Am Rev Respir Dis. 2011;183(1):A2494. doi: 10.1164/ajrccm-conference.2011.183.1_MeetingAbstracts.A2494.

8. Caironi P, Tognoni G, Masson S, et al. Albumin replacement in patients with severe sepsis or septic shock. N Engl J Med. 2014;370(15):1412-1421. doi: 10.1056/NEJMoa1305727.

9. Schlapbach LJ, MacLaren G, Festa M, et al. Prediction of pediatric sepsis mortality within 1 h of intensive care admission. Intensive Care Med. 2017;43(8):1085-1096. doi: 10.1007/s00134-017-4701-8.

10. Hon KL, Leung KKY, Oberender F, Leung AKC. Paediatrics: how to manage septic shock. Drugs Context. 2021;10:2021-1-5. doi: 10.7573/dic.2021-1-5.

11. Hu T, Zhang Z, Jiang Y. Albumin corrected anion gap for predicting in-hospital mortality among intensive care patients with sepsis: a retrospective propensity score matching analysis. Clin Chim Acta. 2021;521:272-277. doi: 10.1016/j.cca.2021.07.021.

12. Peker N, Couto N, Sinha B, Rossen JW. Diagnosis of bloodstream infections from positive blood cultures and directly from blood samples: recent developments in molecular approaches. Clin Microbiol Infect. 2018;24(9):944-955. doi: 10.1016/j.cmi.2018.05.007.

13. Gunsolus IL, Sweeney TE, Liesenfeld O, Ledeboer NA. Diagnosing and managing sepsis by probing the host response to infection: advances, opportunities, and challenges. J Clin Microbiol. 2019;57(7):e00425-19. doi: 10.1128/JCM.00425-19.

14. Dailey PJ, Osborn J, Ashley EA, et al. Defining system requirements for simplified blood culture to enable widespread use in resource-limited settings. Diagnostics (Basel). 2019;9(1):10. doi: 10.3390/diagnostics9010010.

15. Duncan CF, Youngstein T, Kirrane MD, Lonsdale DO. Diagnostic challenges in sepsis. Curr Infect Dis Rep. 2021;23(12):22. doi: 10.1007/s11908-021-00765-y.

16. Ali J, Johansen W, Ahmad R. Short turnaround time of seven to nine hours from sample collection until informed decision for sepsis treatment using nanopore sequencing. Sci Rep. 2024;14(1):1-16. doi: 10.1038/s41598-024-55635-z.

17. Rey C, Arcos ML, Concha A. Procalcitonin as a diagnostic and prognostic biomarker of sepsis in critically ill children. Pediatr Crit Care Med. 2003;4(2):264-266. doi: 10.1097/01.PCC.0000059335.06909.FA.

18. Downes KJ, Fitzgerald JC, Weiss SL. Utility of procalcitonin as a biomarker for sepsis in children. J Clin Microbiol. 2020;58(7):e01851-19. doi: 10.1128/JCM.01851-19.

19. Wada Y, Takeda Y, Kuwahata M. Potential role of amino acid/protein nutrition and exercise in serum albumin redox state. Nutrients. 2018;10(1):7. doi: 10.3390/nu10010017.

20. Artigas A, Wernerman J, Arroyo V, Vincent JL, Levy M. Role of albumin in diseases associated with severe systemic inflammation: pathophysiologic and clinical evidence in sepsis and in decompensated cirrhosis. J Crit Care. 2016;33:62-70. doi: 10.1016/j.jcrc.2015.12.019.

21. Kim MH, Ahn JY, Song JE, et al. The C-reactive protein/albumin ratio as an independent predictor of mortality in patients with severe sepsis or septic shock treated with early goal-directed therapy. PLoS One. 2015;10(7):e0132109. doi: 10.1371/journal.pone.0132109.

22. Cao Y, Su Y, Guo C, He L, Ding N. Albumin level is associated with short-term and long-term outcomes in sepsis patients admitted in the ICU: a large public database retrospective research. Clin Epidemiol. 2023;15:263-273. doi: 10.2147/CLEP.S396247.

23. Singer M, Deutschman CS, Seymour C, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315(8):801-810. doi: 10.1001/jama.2016.0287.

24. de Souza D, Machado F. Epidemiology of pediatric septic shock. J Pediatr Intensive Care. 2019;8(1):3-10. doi: 10.1055/s-0038-1676634.

25. Rusmawatiningtyas D, Nurnaningsih N. Mortality rates in pediatric septic shock. Paediatr Indones. 2017;56(5):304-310. doi: 10.14238/pi56.5.2016.304-10.

26. Watson RS, Carcillo JA, Linde-Zwirble WT, et al. The epidemiology of severe sepsis in children in the United States. Am J Respir Crit Care Med. 2003;167(5):695-701. doi: 10.1164/rccm.200207-682OC.

27. Vekaria-Hirani V, Kumar R, Musoke RN, Wafula EM, Chipkophe IN. Prevalence and management of septic shock among children admitted at the Kenyatta National Hospital, longitudinal survey. Int J Pediatr. 2019;2019:1502963. doi: 10.1155/2019/1502963.

28. Miura S, Michihata N, Hashimoto Y, et al. Descriptive statistics and risk factor analysis of children with community-acquired septic shock. J Intensive Care. 2023;11(1):6. doi: 10.1186/s40560-023-00652-9.

29. Hermon MM, Etmayr T, Brandt JB, et al. Pediatric infection and sepsis in five age subgroups: single-center registry. Wien Med Wochenschr. 2021;171(1-2):29-35. doi: 10.1007/s10354-020-00787-6.

30. Vekaria-Hirani V, Kumar R, Musoke RN, Wafula EM, Chipkophe IN. Prevalence and management of septic shock among children admitted at the Kenyatta National Hospital, longitudinal survey. Int J Pediatr. 2019;2019:1502963. doi: 10.1155/2019/1502963.

31. Chowdhury VP, Sarmin M, Kamal M, et al. Factors associated with mortality in severely malnourished hospitalized children who developed septic shock. J Infect Dev Ctries. 2022;16(2):339-345. doi: 10.3855/jidc.15135.

32. Amarante ACA, Linck Junior A, Ferrari RAP, Lopes GK, Capobiango JD. Analysis of factors associated with mortality due to sepsis resulting from device-related infections. An Pediatr (Engl Ed). 2024;101(2):115-123. doi: 10.1016/j.anpede.2024.07.003.

33. Regitz-Zagrosek V. Sex and gender differences in health. EMBO Rep. 2012;13(7):596. doi: 10.1038/embor.2012.87.

34. Lakbar I, Einav S, Lalevée N, et al. Interactions between gender and sepsis—implications for the future. Microorganisms. 2023;11(3):746. doi: 10.3390/microorganisms11030746.

35. Tonial CT, Costa CAD, Andrades GRH, et al. Prediction of poor outcomes for septic children according to ferritin levels in a middle-income setting. Pediatr Crit Care Med. 2020;21(5):e259-e266. doi: 10.1097/PCC.0000000000002273.

36. Kaur G, Vinayak N, Mittal K, Kaushik JS, Aamir M. Clinical outcome and predictors of mortality in children with sepsis, severe sepsis, and septic shock from Rohtak, Haryana: a prospective observational study. Indian J Crit Care Med. 2014;18(7):437-441. doi: 10.4103/0972-5229.136072.

37. Thavamani A, Umapathi KK, Dhanpalreddy H, et al. Epidemiology, clinical and microbiologic profile and risk factors for inpatient mortality in pediatric severe sepsis in the United States from 2003 to 2014: a large population analysis. Pediatr Infect Dis J. 2020;39(9):781-788. doi: 10.1097/INF.0000000000002669.

38. Jiang X, Zhang C, Pan Y, Cheng X, Zhang W. Effects of C-reactive protein trajectories of critically ill patients with sepsis on in-hospital mortality rate. Sci Rep. 2023;13(1):15223. doi: 10.1038/s41598-023-42352-2.

39. Azevedo Z, Moore D, Lima-Setta F, et al. Malnutrition in the pediatric septic patient. Pediatr Crit Care Med. 2021;22(3S):335. doi: 10.1097/01.pcc.0000741116.08139.d7.

40. Peterson LW, Artis D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol. 2014;14(3):141-153. doi: 10.1038/nri3608.

41. Martinsen TC, Bergh K, Waldum HL. Gastric juice: a barrier against infectious diseases. Basic Clin Pharmacol Toxicol. 2005;96(2):94-102. doi: 10.1111/j.1742-7843.2005.pto960202.x.

42. Irving SY, Daly B, Verger J, et al. The association of nutrition status expressed as body mass index z-score with outcomes in children with severe sepsis: a secondary analysis from the Sepsis Prevalence, Outcomes and Therapies (SPROUT) study. Crit Care Med. 2018;46(11):e1029-e1039. doi: 10.1097/CCM.0000000000003351.

43. Yuniar I, Karyanti MR, Kurniati N, Handayani D. The clinical and biomarker approach to predict sepsis mortality in pediatric patients. Paediatr Indones. 2023;63(1):37-44. doi: 10.14238/pi63.1.2023.37-44.

44. De Vita MV, Scolfaro C, Santini B, et al. Malnutrition, morbidity and infection in the informal settlements of Nairobi, Kenya: an epidemiological study. Ital J Pediatr. 2019;45(1):12. doi: 10.1186/s13052-019-0607-0.

45. Schlaudecker EP, Steinhoff MC, Moore SR. Interactions of diarrhea, pneumonia, and malnutrition in childhood: recent evidence from developing countries. Curr Opin Infect Dis. 2011;24(5):496-502. doi: 10.1097/QCO.0b013e328349287d.

46. Walson JL, Berkley JA. The impact of malnutrition on childhood infections. Curr Opin Infect Dis. 2018;31(3):231-236. doi: 10.1097/QCO.0000000000000448.

47. Ibrahim MK, Zambruni M, Melby CL, Melby PC. Impact of childhood malnutrition on host defense and infection. Clin Microbiol Rev. 2017;30(4):919-971. doi: 10.1128/CMR.00119-16.

48. Prendergast AJ. Malnutrition and vaccination in developing countries. Philos Trans R Soc Lond B Biol Sci. 2015;370(1671):20140141. doi: 10.1098/rstb.2014.0141.

49. Mathias B, Mira J, Larson SD. Pediatric sepsis. Curr Opin Pediatr. 2016;28(3):380-387. doi: 10.1097/MOP.0000000000000337.

50. Vincent JL, Sakr Y, Sprung CL, et al. Sepsis in European intensive care units: results of the SOAP study. Crit Care Med. 2006;34(2):344-353. doi: 10.1097/01.ccm.0000194725.48928.3a.

51. Walden AP, Clarke GM, McKechnie S, et al. Patients with community-acquired pneumonia admitted to European intensive care units: an epidemiological survey of the GenOSept cohort. Crit Care. 2014;18(2):R58. doi: 10.1186/cc13812.

52. Gu X, Zhou F, Wang Y, Fan G, Cao B. Respiratory viral sepsis: epidemiology, pathophysiology, diagnosis and treatment. Eur Respir Rev. 2020;29(157):200038. doi: 10.1183/16000617.0038-2020.

53. Hatherill M, Tibby SM, Turner C, Ratnavel N, Murdoch IA. Procalcitonin and cytokine levels: relationship to organ failure and mortality in pediatric septic shock. Crit Care Med. 2000;28(7):2591-2594. doi: 10.1097/00003246-200007000-00068.

54. Lubis M, Lubis AD, Nasution BB. The usefulness of c-reactive protein, procalcitonin, and PELOD-2 score as a predictive factor of mortality in sepsis. Indones Biomed J. 2020;12(2):85-88. doi: 10.18585/inabj.v12i2.1073.

55. Schuetz P, Birkhahn R, Sherwin R, et al. Serial procalcitonin predicts mortality in severe sepsis patients: results from the multicenter procalcitonin monitoring SEpsis (MOSES) study. Crit Care Med. 2017;45(5):781-789. doi: 10.1097/CCM.0000000000002321.

56. Aygun F. Procalcitonin value is an early prognostic factor related to mortality in admission to pediatric intensive care unit. Crit Care Res Pract. 2018;2018:9238947. doi: 10.1155/2018/9238947.

57. Lautz AJ, Dziorny AC, Denson AR, et al. Value of procalcitonin measurement for early evidence of severe bacterial infections in the PICU. J Pediatr. 2016;179:74-81.e2. doi: 10.1016/j.jpeds.2016.07.045.

58. Pontrelli G, De Crescenzo F, Buzzetti R, et al. Accuracy of serum procalcitonin for the diagnosis of sepsis in neonates and children with systemic inflammatory syndrome: a meta-analysis. BMC Infect Dis. 2017;17(1):302. doi: 10.1186/s12879-017-2396-7.

59. Ozger HS, Senol E. Use of infection biomarkers in the Emergency Department. Turkish J Emerg Med. 2022;22(4):169-176. doi: 10.4103/2452-2473.357347.

60. Kumar PS, Kumar AK, Belagodu MN, Gera R. Prognostic significance of serum pro-calcitonin level in paediatric intensive care unit patients. Int J Contemp Pediatr. 2023;10(5):721-727. doi: 10.18203/2349-3291.ijcp20231150.

61. Casado-Flores J, Blanco-Quirós A, Asensio J, et al. Serum procalcitonin in children with suspected sepsis: a comparison with C-reactive protein and neutrophil count. Pediatr Crit Care Med. 2003;4(2):190-195. doi: 10.1097/01.PCC.0000059420.15811.2D.

62. Downes KJ. Procalcitonin in pediatric sepsis: what is it good for? J Pediatric Infect Dis Soc. 2021;10(12):1108-1110. doi: 10.1093/jpids/piab066.

63. Han YY, Doughty LA, Kofos D, Sasser H, Carcillo JA. Procalcitonin is persistently increased among children with poor outcome from bacterial sepsis. Pediatr Crit Care Med. 2003;4(1):21-25. doi: 10.1097/00130478-200301000-00004.

64. Jerry AL, Sundari S, Shirley AS, Shanthi R, Shiji R. Comparison of diagnostic and prognostic value of serum procalcitonin and serum lactate in pediatric sepsis. Int J Contemp Pediatr. 2018;6(1):122. doi: 10.18203/2349-3291.ijcp20185193.

65. Matha SM, Rahiman SN, Gelbart BG, Duke TD. The utility of procalcitonin in the prediction of serious bacterial infection in a tertiary paediatric intensive care unit. Anaesth Intensive Care. 2016;44(5):607-614. doi: 10.1177/0310057X1604400505.

66. Simon L, Saint-Louis P, Amre DK, Lacroix J, Gauvin F. Procalcitonin and c-reactive protein as markers of bacterial infection in critically ill children at onset of systemic inflammatory response syndrome. Pediatr Crit Care Med. 2008;9(4):407-413. doi: 10.1097/PCC.0b013e31817285a6.

67. Siddiqui I, Jafri L, Abbas Q, Raheem A, Haque AU. Relationship of serum procalcitonin, C-reactive protein, and lactic acid to organ failure and outcome in critically ill pediatric population. Indian J Crit Care Med. 2018;22(2):91-95. doi: 10.4103/ijccm.IJCCM_4_17.

68. Arslan G, Besci T, Özdemir G, et al. Predictive value of PRISM-4, PIM-3, CRP, albumin, CRP/albumin ratio and lactate in critically ill children. Children (Basel). 2023;10(11):1731. doi: 10.3390/children10111731.

69. Anush MM, Ashok VK, Sarma RIN, Pillai SK. Role of c-reactive protein as an indicator for determining the outcome of sepsis. Indian J Crit Care Med. 2019;23(1):11-14. doi: 10.5005/jp-journals-10071-23105.

70. Ranzani OT, Zampieri FG, Forte DN, Azevedo LCP, Park M. C-reactive protein/albumin ratio predicts 90-day mortality of septic patients. PLoS One. 2013;8(3):e59321. doi: 10.1371/journal.pone.0059321.

71. Hill A, Heyland DK, Ortiz Reyes LA, et al. Combination of enteral and parenteral nutrition in the acute phase of critical illness: an updated systematic review and meta-analysis. JPEN J Parenter Enteral Nutr. 2022;46(2):395-410. doi: 10.1002/jpen.2125.

72. Park JE, Chung KS, Song JH, et al. The C-reactive protein/albumin ratio as a predictor of mortality in critically ill patients. J Clin Med. 2018;7(10):333. doi: 10.3390/jcm7100333.

73. Li T, Li X, Wei Y, et al. Predictive value of C-reactive protein-to-albumin ratio for neonatal sepsis. J Inflamm Res. 2021;14:3207-3215. doi: 10.2147/JIR.S321074.

74. Mohamed SA, Elhawary R. C-reactive protein/albumin ratio as an independent predictor of mortality in critically ill pediatric patients. J Child Sci. 2020;10(1):E1-E11. doi: 10.1055/s-0040-1701623.

75. Chen X, Liu Y, Zou C, et al. Predictive value of the C-reactive protein to albumin ratio in the treatment of septic arthritis in young children: a retrospective study. Orthop Traumatol Surg Res. 2024:103948. doi: 10.1016/j.otsr.2024.103948.

76. Hu J, Lv C, Hu X, Liu J. Effect of hypoproteinemia on the mortality of sepsis patients in the ICU: a retrospective cohort study. Sci Rep. 2021;11(1):24379. doi: 10.1038/s41598-021-03865-w.

77. Clemens N, Wilson PM, Lipshaw MJ, et al. Association between positive blood culture and clinical outcomes among children treated for sepsis in the emergency department. Am J Emerg Med. 2024;76:13-17. doi: 10.1016/j.ajem.2023.10.045.

78. Rusmawatiningtyas D, Rahmawati A, Makrufardi F, et al. Factors associated with mortality of pediatric sepsis patients at the pediatric intensive care unit in a low-resource setting. BMC Pediatr. 2021;21(1):1-10. doi: 10.1186/s12887-021-02945-0.

Downloads

Published

05-08-2025

Issue

Section

PEDIATRICS AND ADOLESCENT MEDICINE

How to Cite

1.
Pratama FK, Setyaningtyas A, Kusumastuti NP, Dharmawati I, Lestari DP, Azis AL. Prognostic accuracy of procalcitonin and other biomarkers in septic shock patient in PICU. Acta Biomed. 2025;96(4):16367. doi:10.23750/abm.v96i4.16367