Diagnostic applications of artificial intelligence in chronic rhinosinusitis: A systematic review
Keywords:
artificial intelligence, chronic rhinosinusitis, diagnostic imaging, deep learning, machine learning, systematic review, rhinology, radiology, computed tomography, paranasal sinusesAbstract
Background and aim: Artificial Intelligence (AI) in healthcare is rapidly expanding and researchers are exploring its possible role in assisting physicians in early diagnosis, accurate prognosis prediction, and efficient treatment planning. This systematic review aims to summarize the evidence about the role of AI, Machine Learning (ML), and Deep Learning (DL) in the diagnostic imaging of chronic rhinosinusitis (CRS).
Methods: The search strategy was performed according to PRISMA guidelines for systematic reviews. The authors searched all articles in three major medical databases (PubMed, Scopus, Cochrane Library) using the following key terms: “Artificial Intelligence” or “Machine Learning” or “Deep Learning” or “Neural Convolution Learning” or “Knowledge Engineering” and “Nose” or "Nasal” or “Septum” or “Turbinate” or “Sinus” or “Rhinology” or “Sinusitis” or “Rhinosinusitis” or “Chronic Rhinosinusitis” or “Chronic Sinusitis” or “CRS” and “CT” or “MRI” or “Computed Tomography” or “Images” or “CBCT” or “Magnetic Resonance Imaging” or “Imaging” or “Radiographs” or “X-ray”.
Results: Overall, 395 manuscripts were identified, and after duplicate removal (27 articles), excluding off-topic studies (298) and for other structural reasons (50) papers were assessed for eligibility; finally, only 20 papers were included and summarized in the review.
Conclusions: Despite the growing interest in AI applications, due to the lack of standardized and unified validation procedures and the heterogeneity of patient cohorts, its practical role in rhinology, particularly in radiological image processing in CRS, is not yet well defined, and further research is needed. It should be crucial for physicians to use their knowledge and skills to critically assess the information provided by AI and make any final treatment decisions.
References
1. Wu Q, Wang X, Liang G, et al. Advances in Image-Based Artificial Intelligence in Otorhinolaryngology-Head and Neck Surgery: A Systematic Review. Otolaryngol Head Neck Surg. 2023 Nov;169(5):1132-1142. doi: 10.1002/ohn.391.
2. Osie G, Darbari Kaul R, Alvarado R, et al. A Scoping Review of Artificial Intelligence Research in Rhinology. Am J Rhinol Allergy. 2023 Jul;37(4):438-448. doi: 10.1177/19458924231162437.
3. Tsilivigkos C, Athanasopoulos M, Micco RD, et al. Deep Learning Techniques and Imaging in Otorhinolaryngology-A State-of-the-Art Review. J Clin Med. 2023 Nov 8;12(22):6973. doi: 10.3390/jcm12226973.
4. Zhong NN, Wang HQ, Huang XY, et al. Enhancing head and neck tumor management with artificial intelligence: Integration and perspectives. Semin Cancer Biol. 2023 Oct;95:52-74. doi: 10.1016/j.semcancer.2023.07.002.
5. Tama BA, Kim DH, Kim G, Kim SW, Lee S. Recent Advances in the Application of Artificial Intelligence in Otorhinolaryngology-Head and Neck Surgery. Clin Exp Otorhinolaryngol. 2020 Nov;13(4):326-339. doi: 10.21053/ceo.2020.00654.
6. Jun YJ, Jung J, Lee HM. Medical data science in rhinology: Background and implications for clinicians. Am J Otolaryngol. 2020 Nov-Dec;41(6):102627. doi: 10.1016/j.amjoto.2020.102627.
7. Shortliffe EH, Davis R, Axline SG, Buchanan BG, Green CC, Cohen SN. Computer-based consultations in clinical therapeutics: explanation and rule acquisition capabilities of the MYCIN system. Comput Biomed Res. 1975 Aug;8(4):303-20. doi: 10.1016/0010-4809(75)90009-9.
8. Kaul V, Enslin S, Gross SA. History of artificial intelligence in medicine. Gastrointest Endosc. 2020 Oct;92(4):807-812. doi: 10.1016/j.gie.2020.06.040.
9. Lötsch J, Hintschich CA, Petridis P, Pade J, Hummel T. Machine-Learning Points at Endoscopic, Quality of Life, and Olfactory Parameters as Outcome Criteria for Endoscopic Paranasal Sinus Surgery in Chronic Rhinosinusitis. J Clin Med. 2021 Sep 18;10(18):4245. doi: 10.3390/jcm10184245.
10. Kim DK, Lim HS, Eun KM, et al. Subepithelial neutrophil infiltration as a predictor of the surgical outcome of chronic rhinosinusitis with nasal polyps. Rhinology. 2021 Apr 1;59(2):173-180. doi: 10.4193/Rhin20.373.
11. Parsel SM, Riley CA, Todd CA, Thomas AJ, McCoul ED. Differentiation of Clinical Patterns Associated With Rhinologic Disease. Am J Rhinol Allergy. 2021 Mar;35(2):179-186. doi: 10.1177/1945892420941706.
12. Amanian A, Heffernan A, Ishii M, Creighton FX, Thamboo A. The Evolution and Application of Artificial Intelligence in Rhinology: A State of the Art Review. Otolaryngol Head Neck Surg. 2023 Jul;169(1):21-30. doi: 10.1177/01945998221110076.
13. Hung KF, Ai QYH, Wong LM, Yeung AWK, Li DTS, Leung YY. Current Applications of Deep Learning and Radiomics on CT and CBCT for Maxillofacial Diseases. Diagnostics (Basel). 2022 Dec 29;13(1):110. doi: 10.3390/diagnostics13010110.
14. Nagi R, Aravinda K, Rakesh N, Gupta R, Pal A, Mann AK. Clinical applications and performance of intelligent systems in dental and maxillofacial radiology: A review. Imaging Sci Dent. 2020 Jun;50(2):81-92. doi: 10.5624/isd.2020.50.2.81.
15. Turosz N, Chęcińska K, Chęciński M, Brzozowska A, Nowak Z, Sikora M. Applications of artificial intelligence in the analysis of dental panoramic radiographs: an overview of systematic reviews. Dentomaxillofac Radiol. 2023 Oct;52(7):20230284. doi: 10.1259/dmfr.20230284.
16. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021 Mar 29;372:n71. doi: 10.1136/bmj.n71.
17. National Heart, Lung, and Blood Institute Study Quality Assessment Tools (NHISQAT). Available at: https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools. Accessed May 3, 2024.
18. Collins GS, Moons KGM, Dhiman P, et al. TRIPOD+AI statement: updated guidance for reporting clinical prediction models that use regression or machine learning methods. BMJ. 2024 Apr 16;385:e078378. doi: 10.1136/bmj-2023-078378.
19. Xiong P, Chen J, Zhang Y, et al. Predictive modeling for eosinophilic chronic rhinosinusitis: Nomogram and four machine learning approaches. iScience. 2024 Jan 17;27(2):108928. doi: 10.1016/j.isci.2024.108928.
20. Du W, Kang W, Lai S, et al. Deep learning in computed tomography to predict endotype in chronic rhinosinusitis with nasal polyps. BMC Med Imaging. 2024 Jan 24;24(1):25. doi: 10.1186/s12880-024-01203-w.
21. Alekseeva V, Nechyporenko A, Frohme M, et al. Intelligent Decision Support System for Differential Diagnosis of Chronic Odontogenic Rhinosinusitis Based on U-Net Segmentation. Electronics. 2023;12:1202. doi:10.3390/electronics12051202.
22. Kim K, Lim CY, Shin J, Chung MJ, Jung YG. Enhanced artificial intelligence-based diagnosis using CBCT with internal denoising: Clinical validation for discrimination of fungal ball, sinusitis, and normal cases in the maxillary sinus. Comput Methods Programs Biomed. 2023 Oct;240:107708. doi: 10.1016/j.cmpb.2023.107708.
23. He S, Chen W, Wang X, et al. Deep learning radiomics-based preoperative prediction of recurrence in chronic rhinosinusitis. iScience. 2023 Mar 30;26(4):106527. doi: 10.1016/j.isci.2023.106527.
24. Duan B, Lv HY, Huang Y, Xu ZM, Chen WX. Deep learning for the screening of primary ciliary dyskinesia based on cranial computed tomography. Front Physiol. 2023 Mar 15;14:1098893. doi: 10.3389/fphys.2023.1098893.
25. Zhou H, Fan W, Qin D, et al. Development, Validation and Comparison of Artificial Neural Network and Logistic Regression Models Predicting Eosinophilic Chronic Rhinosinusitis With Nasal Polyps. Allergy Asthma Immunol Res. 2023 Jan;15(1):67-82. doi: 10.4168/aair.2023.15.1.67.
26. Massey CJ, Ramos L, Beswick DM, Ramakrishnan VR, Humphries SM. Clinical Validation and Extension of an Automated, Deep Learning-Based Algorithm for Quantitative Sinus CT Analysis. AJNR Am J Neuroradiol. 2022 Sep;43(9):1318-1324. doi: 10.3174/ajnr.A7616.
27. Hua HL, Li S, Xu Y, et al. Differentiation of eosinophilic and non-eosinophilic chronic rhinosinusitis on preoperative computed tomography using deep learning. Clin Otolaryngol. 2023 Mar;48(2):330-338. doi: 10.1111/coa.13988.
28. Kong HJ, Kim JY, Moon HM, et al. Automation of generative adversarial network-based synthetic data-augmentation for maximizing the diagnostic performance with paranasal imaging. Sci Rep. 2022 Oct 27;12(1):18118. doi: 10.1038/s41598-022-22222-z.
29. Lim SH, Kim JH, Kim YJ, et al. Aux-MVNet: Auxiliary Classifier-Based Multi-View Convolutional Neural Network for Maxillary Sinusitis Diagnosis on Paranasal Sinuses View. Diagnostics (Basel). 2022 Mar 18;12(3):736. doi: 10.3390/diagnostics12030736.
30. Kuo CJ, Liao YS, Barman J, Liu SC. Semi-Supervised Deep Learning Semantic Segmentation for 3D Volumetric Computed Tomographic Scoring of Chronic Rhinosinusitis: Clinical Correlations and Comparison with Lund-Mackay Scoring. Tomography. 2022 Mar 7;8(2):718-729. doi: 10.3390/tomography8020059.
31. Kim KS, Kim BK, Chung MJ, Cho HB, Cho BH, Jung YG. Detection of maxillary sinus fungal ball via 3-D CNN-based artificial intelligence: Fully automated system and clinical validation. PLoS One. 2022 Feb 25;17(2):e0263125. doi: 10.1371/journal.pone.0263125.
32. Musleh A. Computed Tomography (Ct) Scan Assisted Machine Learning in the Management of Artifacts Related to Paranasal Sinuses and Anterior Cranial Fossa. Comput Intell Neurosci. 2022;2022:6993370. doi:10.1155/2022/6993370.
33. Jeon Y, Lee K, Sunwoo L, et al. Deep Learning for Diagnosis of Paranasal Sinusitis Using Multi-View Radiographs. Diagnostics (Basel). 2021 Feb 5;11(2):250. doi: 10.3390/diagnostics11020250.
34. Oh JH, Kim HG, Lee KM, et al. Effective End-to-End Deep Learning Process in Medical Imaging Using Independent Task Learning: Application for Diagnosis of Maxillary Sinusitis. Yonsei Med J. 2021 Dec;62(12):1125-1135. doi: 10.3349/ymj.2021.62.12.1125.
35. Humphries SM, Centeno JP, Notary AM, et al. Volumetric assessment of paranasal sinus opacification on computed tomography can be automated using a convolutional neural network. Int Forum Allergy Rhinol. 2020 Nov;10(11):1218-1225. doi: 10.1002/alr.22588.
36. Kim HG, Lee KM, Kim EJ, Lee JS. Improvement diagnostic accuracy of sinusitis recognition in paranasal sinus X-ray using multiple deep learning models. Quant Imaging Med Surg. 2019 Jun;9(6):942-951. doi: 10.21037/qims.2019.05.15.
37. Kim Y, Lee KJ, Sunwoo L, et al. Deep Learning in Diagnosis of Maxillary Sinusitis Using Conventional Radiography. Invest Radiol. 2019 Jan;54(1):7-15. doi: 10.1097/RLI.0000000000000503.
38. Chowdhury NI, Smith TL, Chandra RK, Turner JH. Automated classification of osteomeatal complex inflammation on computed tomography using convolutional neural networks. Int Forum Allergy Rhinol. 2019 Jan;9(1):46-52. doi: 10.1002/alr.22196.
39. Loperfido A, Celebrini A, Marzetti A, Bellocchi G. Current role of artificial intelligence in head and neck cancer surgery: a systematic review of literature. Explor Target Antitumor Ther. 2023;4(5):933-940. doi: 10.37349/etat.2023.00174.
40. Wang K, Ren Y, Ma L, et al. Deep learning-based prediction of treatment prognosis from nasal polyp histology slides. Int Forum Allergy Rhinol. 2023 May;13(5):886-898. doi: 10.1002/alr.23083.
41. Li X, Zhao H, Ren T, Tian Y, Yan A, Li W. Inverted papilloma and nasal polyp classification using a deep convolutional network integrated with an attention mechanism. Comput Biol Med. 2022 Oct;149:105976. doi: 10.1016/j.compbiomed.2022.105976.
42. Nakagawa J, Fujima N, Hirata K, et al. Utility of the deep learning technique for the diagnosis of orbital invasion on CT in patients with a nasal or sinonasal tumor. Cancer Imaging. 2022 Sep 22;22(1):52. doi: 10.1186/s40644-022-00492-0.
43. Zhang H, Wang H, Hao D, et al. An MRI-Based Radiomic Nomogram for Discrimination Between Malignant and Benign Sinonasal Tumors. J Magn Reson Imaging. 2021 Jan;53(1):141-151. doi: 10.1002/jmri.27298.
44. Girdler B, Moon H, Bae MR, Ryu SS, Bae J, Yu MS. Feasibility of a deep learning-based algorithm for automated detection and classification of nasal polyps and inverted papillomas on nasal endoscopic images. Int Forum Allergy Rhinol. 2021 Dec;11(12):1637-1646. doi: 10.1002/alr.22854.
45. Guo R, Hu X, Song H, et al. Weakly supervised deep learning for determining the prognostic value of 18F-FDG PET/CT in extranodal natural killer/T cell lymphoma, nasal type. Eur J Nucl Med Mol Imaging. 2021 Sep;48(10):3151-3161. doi: 10.1007/s00259-021-05232-3.
46. Loperfido A, Cavaliere C, Begvarfaj E, et al. The Impact of Antibiotics and Steroids on the Nasal Microbiome in Patients with Chronic Rhinosinusitis: A Systematic Review According to PICO Criteria. J Pers Med. 2023 Nov 7;13(11):1583. doi: 10.3390/jpm13111583.
47. Fokkens WJ, Lund VJ, Hopkins C, et al. European Position Paper on Rhinosinusitis and Nasal Polyps 2020. Rhinology. 2020 Feb 20;58(Suppl S29):1-464. doi: 10.4193/Rhin20.600.
48. Lou H, Meng Y, Piao Y, Wang C, Zhang L, Bachert C. Predictive significance of tissue eosinophilia for nasal polyp recurrence in the Chinese population. Am J Rhinol Allergy. 2015 Sep-Oct;29(5):350-6. doi: 10.2500/ajra.2015.29.4231.
49. Meng Y, Zhang L, Lou H, Wang C. Predictive value of computed tomography in the recurrence of chronic rhinosinusitis with nasal polyps. Int Forum Allergy Rhinol. 2019 Nov;9(11):1236-1243. doi: 10.1002/alr.22355.
50. Sella GCP, Tamashiro E, Sella JA, et al. Asthma Is the Dominant Factor for Recurrence in Chronic Rhinosinusitis. J Allergy Clin Immunol Pract. 2020 Jan;8(1):302-309. doi: 10.1016/j.jaip.2019.08.007.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Antonella Loperfido, Rosa Maria Minniti, Eugenia Maiorano, Carlo Cavaliere, Federico Sireci, Stefano Taboni, Jacopo Zocchi, Pasquale D'Alessio

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Transfer of Copyright and Permission to Reproduce Parts of Published Papers.
Authors retain the copyright for their published work. No formal permission will be required to reproduce parts (tables or illustrations) of published papers, provided the source is quoted appropriately and reproduction has no commercial intent. Reproductions with commercial intent will require written permission and payment of royalties.