Lipid profile, TNF-α, IL-18, hsCRP, and carotid intima-media thickness (CIMT) diameter in relation to insulin resistance of Indonesian adolescents with overweight and severe obesity

Lipid profile, TNF-α, IL-18, hsCRP, and carotid intima-media thickness (CIMT) diameter in relation to insulin resistance of Indonesian adolescents with overweight and severe obesity

Authors

Keywords:

Insulin resistance, Lipid Profile, TNF-α, IL-18, CIMT

Abstract

Background and Aim: There is an obvious correlation between insulin resistance (IR) in children and adolescents, obesity, and the elements of metabolic syndrome (MetS), which contributes to an increased risk of cardiovascular issues via pro-inflammatory response (TNF-α, IL-18, hsCRP), leading to early atherosclerosis development, marked with carotid intima-media thickness (CIMT). This study aimed to explore the relationships between IR and various factors, including lipid profiles, TNF-α, IL-18, hsCRP, and CIMT in adolescents. Methods: A cross-sectional study was performed between August - December 2023 involving 94 healthy adolescents with obesity. Anthropometric measures and blood biochemistry were done by professional laboratory staff; CIMT diameters were also assessed. IR was established using the HOMA-IR with the parameters of > 5.22 for boys and >3.82 for girls. Results: IR in adolescents with overweight and severe obesity was detected in 26.60% subjects, that much lower than other findings in Southeast Asia and Indonesia and not related to sex. IR subjects had moderate correlation with anthropometric values, including body weight, body mass index (BMI), BMI-for-age Z-score, waist circumference, and hip circumference. In lipid profile, IR had a positive correlation with triglycerides (TG), but a weak negative correlation with HDL. IR had a significant weak correlation with hsCRP and CIMT diameter. Conclusion: IR was positively associated with higher triglycerides (TG), TNF-α, hsCRP levels, and CIMT diameter, while it showed a negative relationship with HDL cholesterol (HDL-c). No significant correlation or difference was observed between IR and serum levels of IL-18. (www.actabiomedica.it)

References

Cho J, Hong H, Park S, Kim S, Kang H. Insulin Resistance and Its Association with Metabolic Syndrome in Korean Children. Biomed Res Int. 2017;2017:8728017. DOI: 0.1155/2017/8728017

Levy-Marchal C, Arslanian S, Cutfield W, Sinaiko A, Druet C, Marcovecchio ML, et al. Insulin Resistance in Children: Consensus, Perspective, and Future Directions. The Journal of Clinical Endocrinology & Metabolism. 2010 Dec 1;95(12):5189–98. DOI: 10.1210/jc.2010-1047

Robinson TN, Banda JA, Hale L, Lu AS, Fleming-Milici F, Calvert SL, et al. Screen Media Exposure and Obesity in Children and Adolescents. Pediatrics. 2017 Nov;140(Suppl 2):S97–101. DOI: 10.1542/peds.2016-1758K

Jurkovičová J, Hirošová K, Vondrová D, Samohýl M, Štefániková Z, Filová A, et al. The Prevalence of Insulin Resistance and the Associated Risk Factors in a Sample of 14-18-Year-Old Slovak Adolescents. Int J Environ Res Public Health. 2021 Jan 21;18(3):909. DOI: 10.3390/ijerph18030909.

Murphy MJ, Metcalf BS, Voss LD, Jeffery AN, Kirkby J, Mallam KM, et al. Girls at Five Are Intrinsically More Insulin Resistant Than Boys: The Programming Hypotheses Revisited—The EarlyBird Study (EarlyBird 6). Pediatrics. 2004 Jan 1;113(1):82–6. DOI: 10.1542/peds.113.1.82.

Jeffery SC, Hosking J, Jeffery AN, Murphy MJ, Voss LD, Wilkin TJ, et al. Insulin resistance is higher in prepubertal girls but switches to become higher in boys at age 16: A Cohort Study (EarlyBird 57). Pediatr Diabetes. 2018 Mar;19(2):223–30. DOI: 0.1111/pedi.12571

Fu Z, R. Gilbert E, Liu D. Regulation of Insulin Synthesis and Secretion and Pancreatic Beta-Cell Dysfunction in Diabetes. Current Diabetes Reviews. 2013 Jan 1;9(1):25–53. DOI: 10.2174/1573399811309010025.

Steinberger J, Daniels SR. Obesity, Insulin Resistance, Diabetes, and Cardiovascular Risk in Children. Circulation. 2003 Mar 18;107(10):1448–53. DOI: 10.1161/01.cir.0000060923.07573.f2.

Greenland P, Abrams J, Aurigemma GP, Bond MG, Clark LT, Criqui MH, et al. Prevention Conference V: Beyond secondary prevention: identifying the high-risk patient for primary prevention: noninvasive tests of atherosclerotic burden: Writing Group III. Circulation. 2000 Jan 4;101(1):E16-22. DOI: 10.1161/01.cir.101.1.e16.

Järvisalo MJ, Jartti L, Näntö-Salonen K, Irjala K, Rönnemaa T, Hartiala JJ, et al. Increased Aortic Intima-Media Thickness. Circulation. 2001 Dec 11;104(24):2943–7. DOI: 10.1161/hc4901.100522.

Sorof JM, Alexandrov AV, Garami Z, Turner JL, Grafe RE, Lai D, et al. Carotid ultrasonography for detection of vascular abnormalities in hypertensive children. Pediatr Nephrol. 2003 Oct 1;18(10):1020–4. DOI: 10.1007/s00467-003-1187-0.

Mihuta MS, Paul C, Ciulpan A, Dacca F, Velea IP, Mozos I, et al. Subclinical Atherosclerosis Progression in Obese Children with Relevant Cardiometabolic Risk Factors Can Be Assessed through Carotid Intima Media Thickness. Applied Sciences. 2021 Jan;11(22):10721. DOI: 10.3390/app112210721

Fève B, Bastard JP. The role of interleukins in insulin resistance and type 2 diabetes mellitus. Nat Rev Endocrinol. 2009 Jun;5(6):305–11. DOI: 10.1038/nrendo.2009.62.

Moller DE. Potential role of TNF-alpha in the pathogenesis of insulin resistance and type 2 diabetes. Trends Endocrinol Metab. 2000 Aug;11(6):212–7. DOI: 10.1016/s1043-2760(00)00272-1

Akash MSH, Shen Q, Rehman K, Chen S. Interleukin-1 receptor antagonist: a new therapy for type 2 diabetes mellitus. J Pharm Sci. 2012 May;101(5):1647–58. DOI: 10.1002/jps.23057.

Rehman K, Akash MSH. Nutrition and Diabetes Mellitus: How are They Interlinked? Crit Rev Eukaryot Gene Expr. 2016;26(4):317–32. DOI: 10.1615/CritRevEukaryotGeneExpr.2016016782.

Kawazoe Y, Naka T, Fujimoto M, Kohzaki H, Morita Y, Narazaki M, et al. Signal transducer and activator of transcription (STAT)-induced STAT inhibitor 1 (SSI-1)/suppressor of cytokine signaling 1 (SOCS1) inhibits insulin signal transduction pathway through modulating insulin receptor substrate 1 (IRS-1) phosphorylation. J Exp Med. 2001 Jan 15;193(2):263–9. DOI: 10.1084/jem.193.2.263

Akash MSH, Rehman K, Chen S. Role of inflammatory mechanisms in pathogenesis of type 2 diabetes mellitus. J Cell Biochem. 2013 Mar;114(3):525–31. DOI: 10.1002/jcb.24402.

Hak AE, Pols HA, Stehouwer CD, Meijer J, Kiliaan AJ, Hofman A, et al. Markers of inflammation and cellular adhesion molecules in relation to insulin resistance in nondiabetic elderly: the Rotterdam study. J Clin Endocrinol Metab. 2001 Sep;86(9):4398–405. DOI: 10.1210/jcem.86.9.7873

Al-Beltagi M, Bediwy AS, Saeed NK. Insulin-resistance in paediatric age: Its magnitude and implications. World J Diabetes. 2022 Apr 15;13(4):282–307. DOI: 10.4239/wjd.v13.i4.282

Goh LPW, Sani SA, Sabullah MK, Gansau JA. The Prevalence of Insulin Resistance in Malaysia and Indonesia: An Updated Systematic Review and Meta-Analysis. Medicina (Kaunas). 2022 Jun 19;58(6):826. DOI: 10.3390/medicina58060826.

Ehtisham S, Crabtree N, Clark P, Shaw N, Barrett T. Ethnic differences in insulin resistance and body composition in United Kingdom adolescents. J Clin Endocrinol Metab. 2005 Jul;90(7):3963–9. DOI: 0.1210/jc.2004-2001.

Raygor V, Abbasi F, Lazzeroni LC, Kim S, Ingelsson E, Reaven GM, et al. Impact of race/ethnicity on insulin resistance and hypertriglyceridaemia. Diab Vasc Dis Res. 2019 Mar;16(2):153–9. DOI: 10.1177/1479164118813890

Das RR, Mangaraj M, Nayak S, Satapathy AK, Mahapatro S, Goyal JP. Prevalence of Insulin Resistance in Urban Indian School Children Who Are Overweight/Obese: A Cross-Sectional Study. Front Med (Lausanne). 2021;8:613594. DOI: 10.3389/fmed.2021.613594

Rupérez FJ, Martos-Moreno GÁ, Chamoso-Sánchez D, Barbas C, Argente J. Insulin Resistance in Obese Children: What Can Metabolomics and Adipokine Modelling Contribute? Nutrients. 2020 Oct 29;12(11):3310. DOI: 10.3390/nu12113310

Chiarelli F, Marcovecchio ML. Insulin resistance and obesity in childhood. Eur J Endocrinol. 2008 Dec;159 Suppl 1:S67-74. DOI: 10.1530/EJE-08-0245.

Genovesi S, Montelisciani L, Giussani M, Lieti G, Patti I, Orlando A, et al. Role of Insulin Resistance as a Mediator of the Relationship between Body Weight, Waist Circumference, and Systolic Blood Pressure in a Pediatric Population. Metabolites. 2023 Mar;13(3):327. DOI: 10.3390/metabo13030327.

Eyzaguirre F, Mericq V. Insulin Resistance Markers in Children. Hormone Research. 2009 Jan 8;71(2):65–74. DOI: 10.3390/metabo13030327.

Deeb A, Suliman S, Tomy M, Yousef H, Mohamed L, Saleh S, et al. Is There a Correlation between Body Weight and Awareness of Healthy Life Style Components in Children? Open Journal of Pediatrics. 2015 Mar 16;5:49–55. DOI: 10.1159/000183894

Weickert MO. Nutritional modulation of insulin resistance. Scientifica (Cairo). 2012;2012:424780. DOI: 0.6064/2012/424780

Barber TM, Kyrou I, Randeva HS, Weickert MO. Mechanisms of Insulin Resistance at the Crossroad of Obesity with Associated Metabolic Abnormalities and Cognitive Dysfunction. Int J Mol Sci. 2021 Jan 7;22(2):546. DOI: 10.3390/ijms22020546

Xi B, Zong X, Kelishadi R, Litwin M, Hong YM, Poh BK, et al. International Waist Circumference Percentile Cutoffs for Central Obesity in Children and Adolescents Aged 6 to 18 Years. J Clin Endocrinol Metab. 2019 Nov 14;105(4):e1569–83. DOI: 10.1210/clinem/dgz195.

Cempaka VP, Sidiartha IGL. Waist circumference and insulin levels in obese children. Paediatrica Indonesiana. 2017;57(4):194–7. DOI: 10.14238/pi57.4.2017.194-7

Lee S, Bacha F, Gungor N, Arslanian SA. Waist circumference is an independent predictor of insulin resistance in black and white youths. J Pediatr. 2006 Feb;148(2):188–94. DOI: 10.1016/j.jpeds.2005.10.001.

Hayashi T, Boyko EJ, McNeely MJ, Leonetti DL, Kahn SE, Fujimoto WY. Visceral adiposity, not abdominal subcutaneous fat area, is associated with an increase in future insulin resistance in Japanese Americans. Diabetes. 2008 May;57(5):1269–75. DOI: 10.2337/db07-1378

Preis SR, Massaro JM, Robins SJ, Hoffmann U, Vasan RS, Irlbeck T, et al. Abdominal subcutaneous and visceral adipose tissue and insulin resistance in the Framingham heart study. Obesity (Silver Spring). 2010 Nov;18(11):2191–8. DOI: 10.1038/oby.2010.59

Tulloch-Reid MK, Hanson RL, Sebring NG, Reynolds JC, Premkumar A, Genovese DJ, et al. Both subcutaneous and visceral adipose tissue correlate highly with insulin resistance in african americans. Obes Res. 2004 Aug;12(8):1352–9. DOI: 10.1038/oby.2004.170

Arner P. Human fat cell lipolysis: biochemistry, regulation and clinical role. Best Pract Res Clin Endocrinol Metab. 2005 Dec;19(4):471–82. DOI: 10.1016/j.beem.2005.07.004.

Ibrahim MM. Subcutaneous and visceral adipose tissue: structural and functional differences. Obes Rev. 2010 Jan;11(1):11–8. DOI: 10.1111/j.1467-789X.2009.00623

Klop B, Elte JWF, Cabezas MC. Dyslipidemia in obesity: mechanisms and potential targets. Nutrients. 2013 Apr 12;5(4):1218–40. DOI: 10.3390/nu5041218

Yu YH, Ginsberg HN. Adipocyte Signaling and Lipid Homeostasis: Sequelae of Insulin-Resistant Adipose Tissue. Circulation Research. 2005 May 27;96(10):1042–52. DOI: 10.1161/01.RES.0000165803.47776.38.

Bays HE, Toth PP, Kris-Etherton PM, Abate N, Aronne LJ, Brown WV, et al. Obesity, adiposity, and dyslipidemia: a consensus statement from the National Lipid Association. J Clin Lipidol. 2013;7(4):304–83. DOI: 10.1016/j.jacl.2013.04.001.

Björnson E, Adiels M, Taskinen MR, Borén J. Kinetics of plasma triglycerides in abdominal obesity. Curr Opin Lipidol. 2017 Feb;28(1):11–8. DOI: 10.1097/MOL.0000000000000375.

E. Felszeghy, R. Káposzta, E. Juhász, L. Kardos, I. Ilyés. Alterations of Carbohydrate and Lipoprotein Metabolism in Childhood Obesity - Impact of Insulin Resistance and Acanthosis Nigricans. Journal of Pediatric Endocrinology and Metabolism. 2009 Dec 1;22(12):1117–26. DOI: 10.1515/jpem.2009.22.12.1117.

Sparks JD, Sparks CE, Adeli K. Selective Hepatic Insulin Resistance, VLDL Overproduction, and Hypertriglyceridemia. Arteriosclerosis, Thrombosis, and Vascular Biology. 2012 Sep;32(9):2104–12. DOI: 10.1161/ATVBAHA.111.241463.

Sinaiko AR, Caprio S. Insulin Resistance. The Journal of Pediatrics. 2012 Jul 1;161(1):11–5. DOI: 10.1016/j.jpeds.2012.01.012

Perkins JM, Joy NG, Tate DB, Davis SN. Acute effects of hyperinsulinemia and hyperglycemia on vascular inflammatory biomarkers and endothelial function in overweight and obese humans. American Journal of Physiology-Endocrinology and Metabolism. 2015 Jul 15;309(2):E168–76. DOI: 10.1152/ajpendo.00064.2015.

Rosvall M, Persson M, Östling G, Nilsson PM, Melander O, Hedblad B, et al. Risk factors for the progression of carotid intima-media thickness over a 16-year follow-up period: The Malmö Diet and Cancer Study. Atherosclerosis. 2015 Apr 1;239(2):615–21.

Ryder JR, Dengel DR, Jacobs DR, Sinaiko AR, Kelly AS, Steinberger J. Relations among Adiposity and Insulin Resistance with Flow-Mediated Dilation, Carotid Intima-Media Thickness, and Arterial Stiffness in Children. The Journal of Pediatrics. 2016 Jan 1;168:205–11.

Asghari G, Dehghan P, Mirmiran P, Yuzbashian E, Mahdavi M, Tohidi M, et al. Insulin metabolism markers are predictors of subclinical atherosclerosis among overweight and obese children and adolescents. BMC Pediatrics. 2018 Nov 23;18(1):368.

Reinehr T, Kiess W, de Sousa G, Stoffel-Wagner B, Wunsch R. Intima media thickness in childhood obesity: Relations to inflammatory marker, glucose metabolism, and blood pressure. Metabolism. 2006 Jan 1;55(1):113–8. DOI: 10.1016/j.atherosclerosis.2015.01.030.

Widjaja NA, Prihaningtyas RA, Hanindita MH, Irawan R, Handajani R, Ugrasena IDG. Association between anthropometric parameters and carotid intima-media thickness in obese adolescents. Sri Lanka J Child Health. 2021 Mar 5;50(1):28. DOI: 10.4038/sljch.v50i1.9398.

Baroncini LAV, Sylvestre L de C, Filho RP. Assessment of Intima-Media Thickness in Healthy Children Aged 1 to 15 Years. Arq Bras Cardiol. 2016 Apr;106(4):327–32. DOI: 10.5935/abc.20160030

Whincup PH, Nightingale CM, Owen CG, Rapala A, Bhowruth DJ, Prescott MH, et al. Ethnic Differences in Carotid Intima-Media Thickness Between UK Children of Black African-Caribbean and White European Origin. Stroke. 2012 Jul;43(7):1747–54. DOI: 10.1161/STROKEAHA.111.644955

Bruun JM, Stallknecht B, Helge JW, Richelsen B. Interleukin-18 in plasma and adipose tissue: effects of obesity, insulin resistance, and weight loss. European Journal of Endocrinology. 2007 Oct 1;157(4):465–71. DOI: 10.1530/EJE-07-0206.

Barber TM, McCarthy MI, Wass J a. H, Franks S. Obesity and polycystic ovary syndrome. Clin Endocrinol (Oxf). 2006 Aug;65(2):137–45. DOI: 10.1111/j.1365-2265.2006.02587

Reaven GM. The metabolic syndrome: requiescat in pace. Clin Chem. 2005 Jun;51(6):931–8. DOI: 10.1373/clinchem.2005.048611.

Shoelson SE, Herrero L, Naaz A. Obesity, inflammation, and insulin resistance. Gastroenterology. 2007 May;132(6):2169–80. DOI: 10.1053/j.gastro.2007.03.059.

Tangvarasittichai S. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World J Diabetes. 2015 Apr 15;6(3):456–80. DOI: 10.4239/wjd.v6.i3.456.

Ormazabal V, Nair S, Elfeky O, Aguayo C, Salomon C, Zuñiga FA. Association between insulin resistance and the development of cardiovascular disease. Cardiovascular Diabetology. 2018 Aug 31;17(1):122. DOI: 10.1186/s12933-018-0762-4.

Tso TK, Huang WN, Chang CK. The association of circulating interleukin-18 with fasting insulin and weight loss in obese children. Health. 2010 Jul 23;2(7):676–81. DOI: 10.4236/health.2010.27102

Ahmad R, Thomas R, Kochumon S, Sindhu S. Increased adipose tissue expression of IL-18R and its ligand IL-18 associates with inflammation and insulin resistance in obesity. Immunity, Inflammation and Disease. 2017;5(3):318–35. DOI: 10.1002/iid3.170.

Okamura H, Tsutsui H, Kashiwamura S, Yoshimoto T, Nakanishi K. Interleukin-18: a novel cytokine that augments both innate and acquired immunity. Adv Immunol. 1998;70:281–312. DOI: 10.1016/s0065-2776(08)60389-2.

Heinrich PC, Castell JV, Andus T. Interleukin-6 and the acute phase response. Biochem J. 1990 Feb 1;265(3):621–36. DOI: 10.1042/bj2650621.

Smart MC, Dedoussis G, Yiannakouris N, Grisoni ML, Dror GK, Yannakoulia M, et al. Genetic variation within IL18 is associated with insulin levels, insulin resistance and postprandial measures. Nutr Metab Cardiovasc Dis. 2011 Jul;21(7):476–84. DOI: 10.1016/j.numecd.2009.12.004.

Qi C, Pekala PH. Tumor necrosis factor-alpha-induced insulin resistance in adipocytes. Proc Soc Exp Biol Med. 2000 Feb;223(2):128–35. DOI: 10.1046/j.1525-1373.2000.22318.x.

Cardoso-Saldaña G, Juárez-Rojas JG, Zamora-González J, Raygoza-Pérez M, Martinez-Alvarado R, Posadas-Sánchez R, et al. C-reactive protein levels and their relationship with metabolic syndrome and insulin resistance in Mexican adolescents. J Pediatr Endocrinol Metab. 2007 Jul;20(7):797–805. DOI: 10.1515/jpem.2007.20.7.797.

Aleman MN, Luciardi MC, Albornoz ER, Bazán MC, Abregú AV. Relationship between inflammatory biomarkers and insulin resistance in excess-weight Latin children. Clin Exp Pediatr. 2023 Dec 21;67(1):37–45. DOI: 10.3345/cep.2022.01382

Nappo A, Iacoviello L, Fraterman A, Gonzalez‐Gil EM, Hadjigeorgiou C, Marild S, et al. High‐sensitivity C‐reactive Protein is a Predictive Factor of Adiposity in Children: Results of the Identification and prevention of Dietary‐ and lifestyle‐induced health Effects in Children and InfantS (IDEFICS) Study. Journal of the American Heart Association. 2(3):e000101. DOI: 10.1161/JAHA.113.000101.

Konstantinos K, Maria P, Konstantina K, Nikolaos K, Maria P, Kiriaki T. High-Sensitivity C-Reactive Protein Levels and Metabolic Disorders in Obese and Overweight Children and Adolescents. Jcrpe. 2013 Mar 5;5(1):44–9. DOI: 10.4274/Jcrpe.789.

Prihaningtyas RA, Widjaja NA, Irawan R, Hanindita MH, Hidajat B. Dietary Intakes and High Sensitivity CRP (hsCRP) in Adolescents With Obesity. CRPJFST. 2019 Dec 31;83–8. DOI: 10.34302/CRPJFST/2019.11.5.12

Cutfield WS, Jefferies CA, Jackson WE, Robinson EM, Hofman PL. Evaluation of HOMA and QUICKI as measures of insulin sensitivity in prepubertal children. Pediatr Diabetes. 2003 Sep;4(3):119–25. DOI: 10.1034/j.1399-5448.2003.t01-1-00022.x.

Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985 Jul;28(7):412–9. DOI: 10.1007/BF00280883.

Bergman RN. Lilly lecture 1989. Toward physiological understanding of glucose tolerance. Minimal-model approach. Diabetes. 1989 Dec;38(12):1512–27. DOI: 10.2337/diab.38.12.1512.

Katz A, Nambi SS, Mather K, Baron AD, Follmann DA, Sullivan G, et al. Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. J Clin Endocrinol Metab. 2000 Jul;85(7):2402–10. DOI: 10.1210/jcem.85.7.6661.

Freeman AM, Acevedo LA, Pennings N. Insulin Resistance. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024. PMID: 29939616

Keskin M, Kurtoglu S, Kendirci M, Atabek ME, Yazici C. Homeostasis model assessment is more reliable than the fasting glucose/insulin ratio and quantitative insulin sensitivity check index for assessing insulin resistance among obese children and adolescents. Pediatrics. 2005 Apr;115(4):e500-503. DOI: 10.1542/peds.2004-1921.

Downloads

Published

28-10-2025

Issue

Section

ORIGINAL CLINICAL RESEARCH

How to Cite

1.
Widjaja NA, Ardiana M, Hanindita MH, Ardianah E, Santoso FM. Lipid profile, TNF-α, IL-18, hsCRP, and carotid intima-media thickness (CIMT) diameter in relation to insulin resistance of Indonesian adolescents with overweight and severe obesity. Acta Biomed. 2025;96(5):16266. doi:10.23750/abm.v96i5.16266