ORIGINAL ARTICLE

Acanthosis nigricans, visceral fat, waist-hip ratio in obese adolescents with metabolic syndrome

Karina Pharamita Dewi, Nur Aisiyah Widjaja

Child Health Department, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia; Child Health Department, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia

Abstract. *Background and Aim:* Metabolic syndrome (MetS) was prevalent in obese adolescents due to insulin resistance (IR), while acanthosis nigricans (AN) was correlated with IR. This study was conducted to analyze the correlation between AN, waist-to-hip ratio (WHR), visceral fat (VF), and the incidence of MetS in adolescents with obesity. *Methods:* From October to December 2023, a cross-sectional study was conducted on obese adolescents aged 15 to 18 in the city of Surabaya. Brief interviews, physical examinations such as AN, blood pressure, waist, hip, visceral fat measurements, and related laboratory examinations were carried out. *Results:* 72 subjects were included in this study. The prevalence of obesity was higher in girls (61.1%) than boys (38.9%). MetS was established in 48%, while AN in 44.4% of subjects. Fat distribution including waist-to-hip ratio (WHR), waist-to-height ratio (WHtR), visceral fat (VF), and total body fat was significantly higher in MetS (p=0.001) and AN (p=0.012). Subjects with non-MetS and non-AN had lower WHtR, total body fat and visceral fat than subjects non-MetS with AN (p<0.05). ROC curve for VF to determine MetS was 13, with a sensitivity of 91.3% and specificity of 33.3%. *Conclusion:* Increased >13 of VF and >0.844 for WHR in obese adolescents presented with AN was associated with a higher risk of developing MetS and can be proposed as a predictor for MetS in obese adolescents.

Key words: metabolic syndrome, acanthosis nigricans, waist-hip-ratio, visceral fat, adolescents

Introduction

Metabolic syndrome (MetS) is a series of physiological, biochemical, and metabolic factors that increase the risk of atherosclerotic cardiovascular disease (CVD) in an individual (1). MetS has a complex pathophysiology involving sedentary lifestyles, unhealthy eating patterns, and insufficient physical activity as risk factors that lead to increased body mass index (BMI) via chronic inflammation and oxidative stress mechanisms (2). It was hypothesized that its relation to CVD was due to the increased production of inflammatory cytokines from metabolically active fatty tissue (3). Dyslipidemia with low levels of High-density lipoprotein-cholesterol (HDL) and hyper-triglyceridemia is

frequently encountered in patients with MetS (4). The prevalence of MetS in children and adolescents has drastically increased as a result of increasing obesity rates (5). Global data in 2016 noted that 41 million children under 5 years old are obese (5), and mostly they live in developing and developed countries (6). Overweight/obesity is the result of excess adipose tissue mass in the body, which leads to many chronic complications. Due to a sedentary lifestyle, the onset of these diseases occurs early in childhood and accumulates with age (7), and obese children/adolescents remain obese when they are adults (8). The increasing prevalence of obesity-related non-communicable diseases (NCD) is a burden for patients, families, and healthcare systems (9). As evidence that MetS is

correlated with obesity, MetS screening in overweight/ obese children and adolescents becomes very important, especially in the age of 9-11 years (10). So, early diagnosis in children is crucial to prevent an increased risk of cardiometabolic disease (11), as it was evident that pediatric MetS correlated with persistent multiple cardiovascular risk over 8 years (12). BMI is the recommended anthropometric to detect overweight/ obesity, but this index does not consider body composition or fat distribution in the body. The gold standard for evaluating visceral fat (VF) using MRI is not cost-effective or feasible in rural areas (13). VF is a proinflammatory endocrine tissue that is suspected to be the cause of cardiometabolic (14), as it is associated with dysglycemia, inflammation, insulin resistance (IR), and myocardial dysfunction. VF constitutes 10% of total body mass in men (15). Waist circumference (WC) was used to access the abdominal fat, as it closely correlated with total abdominal fat mass measured by computed tomography (16). The assessment of WC and waist-to-height ratio (WtHR) has been used to assess obesity in children because they are relatively cheap, easy to use, accurate, and non-invasive (17). WC, WtHR, and waist-to-hip ratio (WHR) indicate the presence of central obesity in children by 14.3% and 16.7%, respectively (18). WHR is considered an early identifier, where a WHR value above 0.891 is found to correlate significantly to MetS (18,19). Abdominal obesity is assessed based on WC and associated with visceral fat, liver fat, CVD risk factors, dyslipidemia, and type 2 diabetes mellitus in children and adolescents. WC measurements can provide a good estimate of VF in adolescents (20), as it is associated with IR and MetS (21,22). Acanthosis nigricans (AN) is a skin discolouration that usually appears in obese patients. It is characterized by thickened, rough skin, wrinkles, and dark pigmentation and can appear on the neck, armpits, knees, elbows, and surfaces of the inguinal region. AN has been closely related to insulin resistance (IR). Thus many studies utilize AN as a clinical marker for IR (23). A recent study revealed that 6.3% of adolescents with AN also had IR (24). It was suspected that chronically high insulin levels induce dermal fibroblasts and proliferation of epidermal keratinocytes, resulting in the development and progression of AN. In recent years, the prevalence of AN in children has

increased along with the increase in obesity in children (25). AN is established as a clinical diagnosis and can be classified into: benign, obese, syndromic, malignant, acral, unilateral, treatment-induced, and mixed-type AN (26). Epidemiological study showed that MetS was prevalent in the subjects with AN (27), and can predict the component of MetS in children (28). Even, it is correlated with CVD risk factors, including BMI, HOMA IR and CRP (29). In a univariate analysis, a significant association of AN was found with BMI, WC, hypertension, HDL, and triglyceride (TG). The risk of MetS was found to be eight times higher in cases of AN (27). However, the usage of AN as the risk factor of MetS is still unclear and needs further confirmation, including the correlation of AN with the severity of hyperglycemia, IR, and dyslipidemia (30). Here we enrolled a study to investigate the fat distribution, represented by WHR, WHtR, total body fat and VF concerning AN and MetS in adolescents.

Methods

Study population and design

An observational study with a cross-sectional design with primary data obtained by direct measurement and interview performed between July to August 2023. Subjects of this study are adolescents between the ages of 15 and 18 years old attending senior high schools residing in Surabaya. A total of 107 high school students were categorized as obese or overweight, and 72 were eligible for this study. Brief interviews, physical examinations such as body weight and height measurement and visual evaluation of AN were performed by the author. A sample of this research's population was obtained using simple random sampling. Healthy adolescents aged 13-18 were recruited.

Anthropometry measurements

The qualified medical staff performed the measurements for anthropometry. The subjects were asked to stand on the digital platform barefoot with light clothes. Electronic scales were calibrated to measure weight and body composition with TANITA RD

953-BK, which then recorded BMI, total body fat, muscle mass, bone mass, and visceral fat. A stadiometer SECA 213 was used to measure heights. This stadiometer is used to measure the subject's height from the heel to the vertex, and the result will be presented by 'meter'. The subject's weight (kg) was divided by the square of their height (in m²) to get their BMI. The CDC defines obesity as having a BMI higher than the 95th percentile for a certain age and gender, and overweight as having a BMI between the 85th and 95th percentile. The subject's waist and hip circumference were measured using a SECA 201®, Germany measuring tape, and WHR was recorded by setting a horizontal tape measure at the approximate middle point between the lower edge of the last palpable rib and the top of the iliac crest at the end of expiration for waist circumference and divided into hip circumference which measured by setting a horizontal tape measure around the widest part of hips.

Physical examination

We observed the present by examining the subject's trunk directly, whether there was a velvet colour or darkening of the skin and presented the result as yes or no. Blood pressure was measured using an OM-RON HEM-8712 digital tensimeter in a sitting and relaxed position.

Biochemical measurements

On different days, subjects were asked to fast for 12 hours. The subjects were asked to fast for eight to twelve hours before the blood was taken for the laboratory testing (the last supper at least 7.00 pm, and no more food consumption, except freshwater). Then, a laboratory worker takes a fasting blood sample (5 ml) for examination via vena cubiti. The blood was then placed in a non-EDTA tube and collected into an ice box for further transportation. The analysis involves lipid profile values consisting of total cholesterol, triglycerides, low-density lipoprotein (LDL), high-density lipoprotein (lipoprotein (HDL), blood sugar, and insulin. All the blood biochemistry was enrolled by our designated laboratory using ELISA assay. The normal fasting blood glucose level in this study was

less than 100 mg/dL, normal total cholesterol was less than 170 mg/dL, Normal HDL was greater than 40 mg/dL, normal LDL was less than 110 mg/dL, and normal TG of less than 150 mg/dL

Diagnosis of obesity and MetS

Obesity was considered based on the CDC 2000 criteria and BMI for age and sex criteria >95th percentile. The metabolic syndrome (MetS) was considered based on the International Diabetes Federation (IDF) criteria for diagnosing the condition in children and adolescents (31,32).

Statistical analysis

The statistical software tool SPSS version 27.0 (SPSS Inc., Chicago, IL, USA) was used to analyze the data using descriptive statistics. Test of normality (Kolmogorov-Smirnorv) and homogeneity of variation were enrolled to determine further analysis, which includes an independent sample T-test (or Mann Whitney U test). Pearson chi-squared test or Fisher's exact test (expected value less than 5 >25%) was applied to categorical data. With a P value less than 0.05, statistical significance was taken into consideration. Multivariate analysis was enrolled with variate of WHR, WHtR, visceral fat, and total body fat to describe the variable of "fat distribution" in MetS and AN as a variable. We also analyzed WHR, WHtR, VF, and total body fat using the ROC curve and the best trade-off Youden Index (YI) to validate.

Results

The results of this study are as shown in Table 1, reveal that the incidence of obesity among males and females is approximately 2:1, with 44 male (61.1%) and 28 female (38.9%) subjects categorized as obese. MetS were found in 35 (48.6%) subjects, while AN was found in 32 (44.4%) subjects.

Those subjects with AN had bigger anthropometric measurements and metabolic profiles such as triglyceride, systole, and diastole blood pressure but lower HDL-c than subjects without AN significantly.

Table 1. Characteristics of subjects between MetS and non-MetS

Patient Characteristics	Mean + SD	MetS (n=35)	Non-MetS (n=37)	P value	
Age (months-old)	197.21 + 9.814	197.63 + 9.42	196.81 + 10.28	0.862ª	
Gender (n[%]) • Female • Male	28 (38.9 %) 44 (61.1 %)	14 (40%) 21 (60%)	14 (37.84%) 23 (62.16%)	0.851 ^b	
Acanthosis Nigricans (n[%]) Present Not Present	32 (44.4%) 40 (55.5%)	23 (65.72%) 12 (34.28%)	9 (24.32%) 28 (75.67%)	<0.0001 ^b	
Body weight (kg)	91.39 + 23.64	103.98 + 13.44	79.47 + 25.13	<0.0001°	
Body height (cm)	164.21 + 7.34	164.14 + 7.32	164.28 + 7.46	0.913ª	
BMI	34.13 + 8.44	38.69 + 3.63	29.85 + 9.41	<0.0001°	
BMI-for-age	2.57 + 1.55	3.47 + 0.52	1.71 + 1.72	<0.0001°	
Waist circumference (cm)	97.56 + 97.56	107.96 + 11.40	87.72 + 22.99	<0.0001 ^a	
Hip circumference (cm)	109.12 + 16.85	118.21 + 8.30	100.52 + 18.40	<0.0001°	
WHR	0.89 + 0.09	0.91 + 0.07	0.86 + 0.10	0.269ª	
WHtR	0.59 + 0.12	0.66 + 0.05	0.53 + 0.13	<0.0001°	
HAZ	-0.70 + 0.75	-0.62 + 0.90	-0.77 + 0.58	0.439ª	
Bone Mass (%)	3.76 + 2.76	3.74 + 0.46	3.78 + 3.85	0.002°	
Visceral Fat (%)	14.78 + 7.44	17.20 + 3.61	12.50 + 9.27	0.011 ^a	
Body Fat (%)	30.55 + 11.43	35.68 + 8.80	25.70 + 11.62	<0.0001°	
Muscle Mass (%)	59.01 + 14.79	63.34 + 13.19	54.91 + 15.22	0.015 ^a	
Systole blood pressure (mmHg)	130.58 + 16.01	137.06 + 14.97	124.46 + 14.65	0.001 ^a	
Diastole blood pressure (mmHg)	81.89 + 11.54	86.57 + 9.44	77.45 + 11.71	0.001 ^a	
Central obesity (n[%]) • Present • No	52 (72.22%) 20 (27.78%)	35 (100%) 0 (0%)	17 (45.95%) 20 (54.05%)	<0.0001 ^b	
Fasting blood glucose levels (n[%]) • High • Normal	1 (1.39%) 71 (98.61%)	1 (2.86%) 34 (97.14%)	0 (0%) 37 (100%)	0.300	
Triglyceride levels (n[%]) • High • Normal	18 (25%) 54 (75%)	14 (40%) 21 (60%)	4 (10.81%) 33 (89.19%)	0.006 ^b	
HDL-c levels (n[%]) • Low • Normal	38 (52.78%) 34 (47.22%)	32 (91.43%) 3 (8.57%)	6 (16.22%) 31 (83.78%)	<0.0001 ^b	
Hypertension (n[%]) • Present • No	47 (65.28%) 25 (34.72%)	34 (97.14%) 1 (2.86%)	13 (35.14%) 24 (64.86%)	<0.0001 ^b	
Insulin, (IU/mL)	27.07 + 18.34	32.48 + 14.91	21.96 + 19.96	<0.0001°	
HOMA IR	5.76 + 4.18	6.87 + 3.12	4.71 + 4.79	<0.0001°	

^aIndependent sample T-test; ^bPearson chi-square; ^cMann Whitney U test. *Abbreviations:* MetS: metabolic syndrome; BMI: body mass index; WHR: waist-to-hip ratio; WHtR: waist-to-height ratio; HAZ: height-for-age z-score; HDL-c: high-density lipoprotein cholesterol.

Greater fat distribution was also seen in subjects with AN than non-AN, as seen in Table 2. The presence of MetS components: central obesity, low level of HDL-c, hypertriglyceridemia, and hypertension was significantly more prevalent in subjects with AN than without AN. Table 3 summarized the prevalence of AN with MetS components and showed that abdominal obesity had a strong relationship with AN, followed by hypertension. While low levels of HDL-c had a weak correlation with AN. With MetS, AN had a weak correlation (r=0.384, *P*<0.0001).

Table 4 summarized the multivariate analysis of MetS and AN with fat distribution. Hotelling's Trace test reveals that fat distribution (WHR, WHtR, VF, and total body fat) was significantly higher in MetS and AN (P=0.001 and 0.012 respectively), and there was an interaction between MetS and AN (*P*=0.001) on fat distribution. Univariate analysis showed that the component of fat distribution associated with MetS was WHtR and total body fat, not WHR and VF. The interaction between MetS and AN showed a significant difference in variate WHtR and total body fat (P<0.0001 and 0.002, respectively). When the analysis was breakdown into a univariate, non-MetS *non-AN significantly had lower WHtR, total body fat,into a univariate, non-MetS *non-AN had lower WHtR, total body fat, and visceral fat than non-MetS*AN, MetS*non-AN, and MetS*AN (P<0.05). WHR were significantly lower in non-MetS*AN than non-MetS*AN and MetS*AN (P < 0.05).

Figure 1 reflects the ROC of fat distribution to determine MetS in adolescents. The area under the curve (AUC) for WHR to predict MetS in obese adolescents was 0.661, 95% CI [0.512- 0.771], *P*=0.007. The cut-off point to determine MetS using WHR was > 0.89, with a sensitivity of 74.29% and specificity of 59.46%. The positive predictive value (PPV) for WHR was 63.41, and the negative predictive value (NPV) was 70.97%. The AUC for WHtR was 0.753, 95% CI [0.609- 0.849], *P*<0.0001. The cut-off was a point to determine MetS using WHtR was > 0.55, with a sensitivity of 100% and specificity of 54.05%, while PPV was 67.31% and NPV was 100%. The AUC for VF to determine MetS was 0.705, 95% CI [0.557- 0.809], with the cut-off points of > 11.50 (100% sensitivity

and 48.65% specificity; 64.81% PPV and 100% NPV). AUC for total body fat in predicting MetS was 0.747 (95% CI [0.607-0.842], P<0.0001), with cut-off points of \geq 25.60% (100% sensitivity, 43.24% specificity; 62.50% PPV and 100% NPV). It was seen that WHtR was the best prediction in predicting MetS in adolescents, as it had a bigger AUC with bigger sensitivity and specificity.

Figure 2 reflects the ROC of fat distribution to determine AN in adolescents. AUC of WHR to determine AN was 0.761 (95% CI [0.627- 0.852], P < 0.0001), with the cut-off points of ≥ 0.89 (81.25%) sensitivity and 62.50% specificity; PPV 63.41% and NPV 80.65%); while AUC for WHtR to determine AN was 0.823 (95% CI [0.698- 0.900], P<0.0001). A cut-off value of WHtR for determining AN was > 0.60 (96.88% sensitivity and 62.50% specificity; 67.39% PPV and 96.15% NPV). AUC for VF in predicting AN was 0.760 (96% CI [0.620- 0.853], P<0.0001), with the cut-off point of ≥ 13.50 (93.75% sensitivity and 60% specificity; 65.22% PPV and 92.31 NPV), while AUC for total body fat in predicting AN was 0.696 (95% CI [0.555- 0.798], P=0.001), with a cutoff point of ≥ 25.60% (100% sensitivity and 40% specificity; 57.14% PPV and 100% NPV). It was seen that all variables had good determination for AN, but the biggest AUC was WHtR, which had good sensitivity and specificity.

Discussion

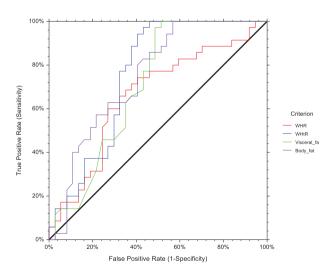
Pediatric obesity data found sex-related gender in the prevalent prevalence of obesity, in which boys are more prevalent than girls globally (33). The predominant of severe obesity, defined as BMI z-score > 3 SD, increased along with the age increment, from 0.9% (age <5 years old), 2.7% (age 5-9 years old), 2.9% (age 10-14 years old), and 3.7% (15-18 years old), and male was twice more prevalent than female in age of 5-9 years old (34), which in line with this findings, male was predominant in this study. The findings are also in line with global findings obesity is higher in males than females (35–37). The high prevalent of overweight/obesity in males might be that after birth, females typically have higher fat mass and lower fat-free

Table 2. Characteristics of subjects between AN and non-AN

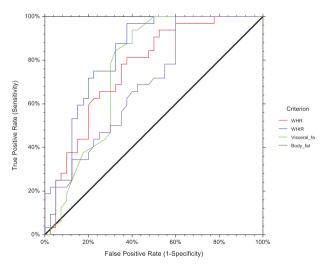
Patient Characteristics	Mean + SD	AN (n=32)	Non-AN (n=40)	P value	
Age (months-old)	197.21 + 9.81	194.94 + 8.34	199.03 + 10.61	0.079ª	
Gender, (n[%]) • Female • Male	32 40	21 11	23 17	0.482 ^b	
Body weight (kg)	91.39 + 23.64	105.29 + 11.95	80.27 + 24.88	<0.0001°	
Body height (cm)	164.21 + 7.34	165.05 + 7.57	163.53 + 7.18	0.386 ^b	
BMI	34.13 + 8.44	39.37 + 5.00	29.94 + 8.32	<0.0001 ^a	
BMI-for-age	2.57 + 1.55	3.51 + 0.52	1.81 + 1.69	<0.0001°	
Waist circumference (cm)	97.56 + 20.83	110.01 + 9.17	87.61 + 22.24	<0.0001a	
Hip circumference (cm)	109.13 + 16.85	118.73 + 9.40	101.45 + 17.63	<0.0001°	
WHR	0.89 + 0.09	0.93 + 0.05	0.85 + 0.10	<0.0001a	
WHtR	0.59 + 0.12	0.67 + 0.05	0.53 + 0.13	<0.0001a	
HAZ	-0.70 + 0.75	-0.63 + 0.84	-0.75 + 0.68	0.502ª	
Bone Mass (%)	3.76 + 2.76	3.83 + 0.51	3.70 + 3.69	<0.0001°	
Visceral Fat (%)	14.78 + 7.44	17.83 + 3.18	12.35 + 8.89	0.001 ^a	
Body Fat (%)	30.55 + 11.56	35.17 + 9.59	26.85 + 9.59	<0.0001°	
Muscle Mass (%)	59.01 + 14.79	65.27 + 12.10	53.99 + 14.97	0.001ª	
Fasting blood glucose (mg/dL)	84.94 + 7.11	86.66 + 6.78	83.58 + 7.15	0.067ª	
Triglyceride (mg/dL)	104.51 + 51.37	125.00 + 52.44	88.13 + 44.71	0.002ª	
HDL-c (mg/dL)	45.51 + 10.07	42.09 + 7.64	48.25 + 10.99	0.009ª	
Systole blood pressure	130.58 + 16.01	137.84 + 14.52	124.77 + 14.88	<0.0001a	
Diastole blood pressure	81.89 + 11.54	85.84 + 10.83	78.73 + 11.23	0.008ª	
Central obesity (n[%]) Present No	52 20	32 0	20 20	<0.0001ª	
Fasting blood glucose (n[%]) • High • Normal	1 71	0 32	1 39	1.000 ^d	
Triglyceride levels (n[%]) • High • Normal	18 54	11 21	7 33	$0.100^{\rm b}$	
HDL-c levels (n[%]) • Low • Normal	38 34	22 10	16 24	0.015 ^d	
Hypertension (n[%]) • Present • No	47 25	30 2	17 23	<0.0001 ^b	
Insulin, (IU/mL)	27.07 + 18.34	41.61 + 18.20	15.44 + 6.06	<0.0001°	
HOMA IR	5.76 + 4.18	8.96 + 4.33	3.21 + 1.36	<0.0001°	

^aIndependent sample T-test; ^bPearson chi-square; ^cMann Whitney U test; ^dFischer's exact test. *Abbreviations*: AN: acanthosis nigricans; BMI: body mass index; WHR: waist-to-hip ratio; WHtR: waist-to-height ratio; HAZ: height-for-age z-score; HDL-c: high-density lipoprotein cholesterol.

Table 3. Correlation between AN	prevalent with MetS compone	nts prevalent using Phi correlation
---------------------------------	-----------------------------	-------------------------------------


Variables	AN n=32	Non-AN n=40	r	P value
Abdominal obesity n (%)	32 (100%)	20 (50%)	0.555	<0.0001
Hyperglycemia n (%)	0 (0%)	1 (2.5%)	-0.106	1.000
Low level of HDL-c n (%)	22 (68.75%)	16 (40%)	0.286	0.019
Triglyceride n (%)	11 (34.38%)	7 (17.50%)	0.194	0.170
Hypertension n (%)	30 (93.75%)	17 (42.5%)	0.535	<0.0001

Abbreviations: HDL-c: high-density lipoprotein cholesterol; AN: acanthosis nigricans; MetS: metabolic syndrome.


Table 4. Multivariate analysis of fat distribution (WHR, WHtR, visceral fat and total body fat) with MetS and AN variables

	MetS variable			AN variable		
Variate	Present	Not present	P value	Present	Not present	P value
WHR	0.91 + 0.07	0.86 + 0.10	0.327	0.93 + 0.05	0.85 + 0.10	0.003
WHtR	0.65 + 0.05	0.53 + 0.13	0.001	0.67 + 0.05	0.53 + 0.13	<0.0001
VF	17.20 + 3.61	12.50 + 9.27	0.160	17.83 + 3.18	12.35 + 8.89	0.013
Total Body Fat	35.68 + 8.80	25.70 + 11.62	0.008	35.17 + 9.59	26.85 + 11.56	0.029
Multivariate <i>P</i> value = 0.012			Multivariate P value = 0.001			

Abbreviations: MetS: metabolic syndrome; AN: acanthosis nigricans; WHR: waist-to-hip ratio; WHtR: waist-to-height ratio; VF: visceral fat.

Figure 1. Receiver operating characteristic curve (ROC) to determine MetS for fat distribution (WHR, WHtR, visceral fat, and total body fat) in adolescents. *Abbreviations:* MetS: metabolic syndrome; WHR: waist-to-hip ratio; WHtR: waist-to-height ratio.

Figure 2. Receiver operating characteristic curve (ROC) to determine AN of fat distribution (WHR, WHtR, visceral fat, and total body fat) in adolescents. *Abbreviations:* AN: acanthosis nigricans; WHR: waist-to-hip ratio; WHtR: waist-to-height ratio.

mass, leading to lower energy intake and calorie needs compared to males, driven by differences in sex steroid hormones and leptin levels influenced by adiposity, BMI, and pubertal status, with androgens in males exerting a suppressive effect on leptin serum concentrations compared to females (33). However, a nationwide survey study conducted in Indonesia showed that the prevalence of young adolescents with overweight and obesity in Jakarta was higher in males. In contrast, in older adolescents, the prevalence was higher in females (37). This may suggest that apart from intrinsic hormonal differences, the different prevalences shown in this study might be attributed to sociocultural influences. Some risk factors have been identified as associated with obesity, namely sedentary lifestyle, eating habits, low physical activity level, long sleep duration and daily computer use, and higher socioeconomic status (38,39).

Diagnostic criteria for MetS were met in 35 (48.6%) subjects, and AN was diagnosed clinically in 32 (44.4%) subjects. A systematic review found that the median occurrence of MetS in the general population was 3.3%, with rates increasing to 11.9% among overweight children and 29.2% among obese individuals, while non-obese, non-overweight populations exhibited a prevalence range of 0-1%; additionally, nearly 90% of obese children and adolescents displayed at least one metabolic syndrome characteristic. (40). No significant difference in MetS prevalent with sex distribution.

Acanthosis nigricans (AN) is commonly found in the posterior neck, axillae, elbows and knees in the form of benign AN which affects 7% of children with obesity, hyperinsulinemia, and IR (41). The most significant AN with a strong association with metabolic impairments were the neck (42), while the axillae region was found in morbid obesity. The presence of AN due to severe IR-related mutation within the insulin receptor (43). Our study found that MetS was more prevalent in AN adolescents, which is in line with others: AN is associated with obesity (61.54%), family history of diabetes mellitus, hypertension, and low physical activity among adolescents aged 13-14, suggesting that regular physical activity may mitigate the onset of AN and potentially reduce the risk of various associated health conditions (44). Acanthosis nigricans (AN) was significantly associated with abdominal obesity, low HDL-c and hypertension in this study. A study noted significantly higher BMI, BMI-for-age z-score, total body fat, WC, systolic and diastolic blood pressure, and lower HDL-c than those without AN in adolescents (45). Others also highlighted its correlation with HOMA IR, CRP and physical fitness score (PFS) in inherited AN, along with lower HDL-c and higher BMI (29). A study in obese children also found a higher value of BMI, systole and diastole blood pressure, triglyceride, insulin and HOMA IR, while lower level of HDL-c in the AN group than in non-AN (46). As noted, the direct relationship of AN in MetS component was mediated by BMI, which then stimulated IR. IR, marked with the Homeostatic Model Assessment for Insulin Resistance (HOMA IR) is suspected as the main cause of metabolic disorders in obesity, which then causes MetS (29). Due to IR-related, AN were mostly found at the neck, axillae and knuckles. Even needs skin biopsy for further diagnostic investigation, it may not be the rule, as IR which manifests with MetS was correlated with AN (47).

Body fat distribution has been found related to CVD There were differences in fat distribution affecting MetS and IR between adults and pediatric populations (48-51). A study noted the role of subcutaneous adiposity as the most significant variate affecting HOMA IR and TG, while BMI affects HDL-c in paediatrics. In adults, WHtR, visceral/subcutaneous fat ratio and BMI affect HOMA IR. BMI and VF affecting TG (48). A previous study found there was a significant relationship between WHR and MetS in obese adolescents, with WHR value > 0.891 had twice the risk of developing MetS than those with lower WHR (OR 2.033; 95% CI = 1.165-3.545). Also, the increased of WHR > 0.89 in adolescents was associated with a higher risk of developing MetS (19). VF was suspected as the cause of MetS due to the anatomic location and peculiar metabolic, hyperlipolytic activity (52), with a 28% greater risk of MetS per increment of 100 m²/m of FV (53). There was no significant difference between VF and WHR in the MetS group, whether they had AN or not. However, the non-MetS showed significantly greater VF and WHR in the AN subject. VF is associated with the increased release of free fatty acids (FFA) into the portal circulation, resulting in IR

and other MetS characteristics (54). A study noted that VF was associated with MetS in men and women even with normal weight, while subcutaneous and intermuscular fat affected MetS only in normal-weight men (55). A systematic review underlined the cut-off point of WHtR in determining abdominal obesity was 0.49 (95% sensitivity and 88 % specificity) (56), while in Korean adolescents, the AUC of WHtR in determining MetS was 0.794 (95% CI=0.767-0.821) (57), which was similar with this study. A global study noted that the cut-off in determining MetS (\geq 2 or \geq 3 components) for the European pediatric population was 0.50, 0.46 in Asian, African, and South American youths (58).

Acanthosis nigricans (AN) has been used as the predictor of IR, due to higher HOMA IR in the AN group than non-AN. It predicts IR in 3 points (index of AN severity, Burke quantitative scale), and HOMA IR was increased along with AN severity (23). AN was prone to males, with the neck as the most frequently affected area, with the cut-off point of insulin sensitivity index (ISI) <3.5 to predict IR (66.7% sensitivity and 82.5% specificity; PPV 91% and NPV 48%) (59). We had difficulties finding the literature describing WHtR, WHR, or visceral fat and total body fat with the incidence of AN. However, we try to find the correlation between those fat distribution indicators and AN. As the marker of IR, several body compositions have been enrolled to correlate with IR, including VF and total body fat, with the cut-off point of total body fat (TBF%) being 46.15% and VF cut-off points 15.2% in prediabetes and diabetes subjects (using HbA1C and fasting blood glucose to determine) in pediatric population (60). A study conducted in young adult students found the WHR cut-off to determine "at risk" of diabetes mellitus using postprandial blood sugar level (75 -100 mg/dl of reference range) ≥ 0.90 in males, while in females was ≥ 0.85 (60). In normal adults, AN was predicted by waist, WHR, and fasting insulin (61). Others found AN was associated with increased BMI, WC, WHR, and glucose impairment components. Grade and number of sites were significantly associated with hyperinsulinemia, and AN was the most simple and non-invasive method to identify glucose impairments, which was the risk of diabetes mellitus (62). This study had many limitations, as it did not include the

history of NCD in the subjects, race, and ethnicity, although the most prevalent was Javanese.

Conclusion

In conclusion, our findings revealed that the prevalence of MetS was 48% and AN was present in 44.4% of the subjects. We found that the cut-off point in obese with MetS for VF is 13 for WHR is 0.844. Overall, our study highlights the potential importance of considering AN, VF, and WHR as indicators of metabolic health in obese adolescents, particularly in the context of identifying individuals at risk for MetS. These findings may contribute to early detection and targeted interventions to mitigate the health risks associated with obesity and metabolic syndrome in this population.

Acknowledgements: None.

Funding: The study was enrolled with the internal fund of Universitas Airlangga.

Ethics Committee: This study was approved as ethically appropriate by the Research and Ethics Scientific (282/EC/KEPK/FKUA/2023) released on October 2nd, 2023, by the Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia. Subjects were screened and measured with the approval of their parents and the head of the school.

Conflict of Interest: Each author declares that he or she has no commercial associations (e.g. consultancies, stock ownership, equity interest, patent/licensing arrangement etc.) that might pose a conflict of interest in connection with the submitted article.

Authors Contribution: KPD: conceptualization, methodology, investigation, and writing original draft; NAW: methodology and investigation.

References

1. Rochlani Y, Pothineni NV, Kovelamudi S, Mehta JL. Metabolic syndrome: pathophysiology, management, and

modulation by natural compounds. Ther Adv Vaccines. 2017 Aug;11(8):215-225. doi: 10.1177/1753944717711379.

- McCracken E, Monaghan M, Sreenivasan S. Pathophysiology of the metabolic syndrome. Clin Dermatol. 2018 Jan-Feb;36(1):14-20.doi:10.1016/j.clindermatol.2017.09.004.
- 3. Muhic E, Mathiesen S, Nielsen MM, et al. Metabolic Syndrome in Male Survivors of Pediatric Allogeneic Hematopoietic Stem Cell Transplantation: Impact of Total Body Irradiation, Low-Grade Inflammation, and Hypogonadism. Transplant Cell Ther. 2021 Sep;27(9):778.e1-778.e8. doi: 10.1016/j.jtct.2021.05.025.
- Salako AO, Gbaja-Biamila TA, Ezemelue PN, et al. Metabolic syndrome among adolescents and young adults living with HIV in Lagos: A cross-sectional study. Glob Pediatr. 2021 Sep;1(February):100001. doi:10.1016/j.gpeds.2021.100001.
- Mameli C, Zuccotti GV, Carnovale C, et al. An update on the assessment and management of metabolic syndrome, a growing medical emergency in paediatric populations. Pharmacol Res. 2017 May;119:99-117. doi:10.1016/j.phrs.2017.01.017.
- 6. Mazidi M, Banach M, Kengne AP; Lipid and Blood Pressure Meta-analysis Collaboration Group. Prevalence of childhood and adolescent overweight and obesity in Asian countries: a systematic review and meta-analysis. Arch Med Sci. 2018 Oct;14(6):1185-1203. doi: 10.5114/aoms.2018.79001.
- Lischka J, Schanzer A, de Gier C, Greber-Platzer S, Zeyda M. Macrophage-associated markers of metaflammation are linked to metabolic dysfunction in pediatric obesity. Cytokine. 2023 Nov;171:156372. doi: 10.1016 /j.cyto.2023.156372.
- Wan Mahmud Sabri WMN, Mohamed RZ, Yaacob NM, Hussain S. Prevalence of Metabolic Syndrome and its Associated Risk Factors in Pediatric Obesity. J ASEAN Fed Endocr Soc. 2022;37(1):24-30. doi: 10.15605/jafes.037.01.05.
- Awasthi A, Panduranga AB, Deshpande A. Prevalence of overweight/obesity in South Asia: A narrative review. Clin Epidemiol Glob Heal. 2023 Jul-Aug;22:101316. doi: 10.1016/j.cegh.2023.101316.
- Magge SN, Goodman E, Armstrong SC, et al. The metabolic syndrome in children and adolescents: Shifting the focus to cardiometabolic risk factor clustering. Pediatrics. 2017 Aug; 140(2):e20171603. doi:10.1542/peds.2017-1603.
- 11. Grabia M, Markiewicz-Żukowska R, Socha K. Prevalence of metabolic syndrome in children and adolescents with type 1 diabetes mellitus and possibilities of prevention and treatment: A systematic review. Nutrients. 2021 May;13(6):1782. doi: 10.3390/nu13061782.
- Lee L, Sanders RA. Metabolic syndrome. Pediatr Rev. 2012 Oct;33(10):459-66; quiz 467-8. doi: 10.1542/pir.33-10-459
- 13. Irenewati S, Arkhaesi N, Wistiani. Association of BMI measurements to waist circumference and waist-to-height ratio in overweight and obese children. Paediatr Indones. 2020 May;60(3):131. doi:10.14238/pi60.3.2020.131-6.

- Bays HE. Adiposopathy: Is "sick fat" a cardiovascular disease? J Am Coll Cardiol. 2011 Jun 21;57(25):2461-73. doi: 10.1016/j.jacc.2011.02.038.
- Abate N, Garg A, Peshock RM, Stray-Gundersen J, Grundy SM. Relationships of generalized and regional adiposity to insulin sensitivity in men. J Clin Invest. 1995 Jul;96(1):88-98. doi: 10.1172/JCI118083.
- 16. Pouliot M-C, Després J, Lemieux S, et al. Waist circumference and abdominal visceral adipose tissue accumulation and related cardiovascular risk in men and women. Am J Cardiol. 1994 Mar 1;73(7):460-8. doi: 10.1016/0002 -9149(94)90676-9.
- 17. Yamanaka AB, Davis JD, Wilkens LR, et al. Determination of Child Waist Circumference Cut Points for Metabolic Risk Based on Acanthosis Nigricans, the Children's Healthy Living Program. Prev Chronic Dis. 2021 Jun 24;18:E64. doi: 10.5888/pcd18.210021.
- 18. Otiashvili L. Metabolic Syndromes in Overweight/ Obese School-Age Children. Glob Pediatr Health. 2022 Sep;9:2333794X221122716. doi: 10.1177/2333794X221 122716.
- 19. Widjaja NA, Arifani R, Irawan R. Cut-off value of Waist-to-Hip Ratio as a predictor of metabolic syndrome in adolescents with obesity. Acta Biomed. 2023 Jun 14; 94(3):e2023076. doi: 10.23750/abm.v94i3.13755.
- Lee S, Kim Y, Han M. Influence of Waist Circumference Measurement Site on Visceral Fat and Metabolic Risk in Youth. J Obes Metab Syndr. 2022 Dec;31(4):296-302. doi: 10.7570/jomes22046.
- 21. Panda PK. Metabolic Syndrome in Children: Definition, Risk Factors, Prevention and Management A Brief Overview. Pediatr Oncall J. 2019 Jul-Sep;16: 67-72. doi: 10.7199/ped.oncall.2019.17.
- 22. Yan Y, Liu J, Zhao X, Cheng H, Huang G, Mi J. Abdominal visceral and subcutaneous adipose tissues in association with cardiometabolic risk in children and adolescents: The China Child and Adolescent Cardiovascular Health (CCACH) study. BMJ Open Diabetes Res Care. 2019 Dec;7(1):e000824. doi: 10.1136/bmjdrc-2019-000824.
- 23. Koh YK, Lee JH, Kim EY, Moon KR. Acanthosis nigricans as a clinical predictor of insulin resistance in obese children. Pediatr Gastroenterol Hepatol Nutr. 2016 Dec;19(4): 251-258. doi: 10.5223/pghn.2016.19.4.251.
- 24. Videira-Silva A, Albuquerque C, Fonseca H. Acanthosis nigricans as a clinical marker of insulin resistance among overweight adolescents. Ann Pediatr Endocrinol Metab. 2019 Jun;24(2):99-103. doi: 10.6065/apem.2019.24.2.99.
- 25. Pollock S, Swamy MR, Tremblay ES, Shen L. Acanthosis nigricans in the pediatric population: a narrative review of the current approach to management in primary care. Pediatr Med. 2022;5:42. doi: 10.21037/pm-21-70.
- 26. Shah N, Khatu S, Gokhale N, More Y, Khismatrao D. Acanthosis nigricans: A cutaneous marker for metabolic syndrome. Med J Dr DY Patil Vidyapeeth. 2019 Jan-Feb;12(1):16–21. doi: 10.4103/mjdrdypu.mjdrdypu_44_18.

27. Choudhary S, Srivastava A, Saoji V, Singh A, Verma I, Dhande S.
 Association of acanthosis nigricans with metabolic syndrome
 An analytic cross-sectional study. An Bras Dermatol. 2023
 Jul-Aug;98(4):460-465. doi: 10.1016/j.abd.2022.07.006.

- 28. Kong AS, Vanderbloemen L, Skipper B, et al. Acanthosis nigricans predicts the clustering of metabolic syndrome components in Hispanic elementary school-aged children. J Pediatr Endocrinol Metab. 2012;25(11-12):1095-102. doi: 10.1515/jpem-2012-0117.
- 29. Lopez-Alvarenga JC, Chittoor G, Paul SFD, et al. Acanthosis nigricans as a composite marker of cardiometabolic risk and its complex association with obesity and insulin resistance in Mexican American children. PLoS One. 2020 Oct 15;15(10):e0240467. doi:10.1371/journal.pone.0240467.
- 30. Karadağ AS, You Y, Danarti R, Al-Khuzaei S, Chen WC. Acanthosis nigricans and the metabolic syndrome. Clin Dermatol. 2018 Jan-Feb;36(1):48-53. doi: 10.1016/j.clindermatol. 2017.09.008.
- Powell EE, Jonsson JR, Clouston AD. Metabolic factors and non-alcoholic fatty liver disease as co-factors in other liver diseases. Dig Dis. 2010;28(1):186-91. doi: 10.1159/000282084.
- 32. Zimmet P, Alberti GKMM, Kaufman F, et al. The metabolic syndrome in children and adolescents An IDF consensus report. Pediatr Diabetes. 2007 Oct;8(5):299-306. doi: 10.1111/j.1399-5448.2007.00271.x.
- 33. Shah B, Tombeau Cost K, Fuller A, Birken CS, Anderson LN. Sex and gender differences in childhood obesity: Contributing to the research agenda. BMJ Nutr Prev Heal. 2020 Sep;3(2):387-390. doi: 10.1136/bmjnph-2020-000074.
- 34. Carsley S, Pope EI, Anderson LN, Tremblay MS, Tu K, Birken CS. Temporal trends in severe obesity prevalence in children and youth from primary care electronic medical records in Ontario: a repeated cross-sectional study. CMAJ Open. 2019 May;7(2):E351-E359. doi: 10.9778 /cmajo.20180174.
- 35. Baker NNA, Daradkeh SM. Prevalence of overweight and obesity among adolescents in Irbid governorate, Jordan. East Mediterr Health J. 2010 Jun;16(6):657-62.
- 36. Sarintohe E, Larsen JK, Burk WJ, Vink JM. The Prevalence of Overweight Status among Early Adolescents from Private Schools in Indonesia: Sex-Specific Patterns Determined by School Urbanization Level. Nutrients. 2022 Feb 27;14(5):1001. doi: 10.3390/nu14051001.
- 37. Eker HH, Taşdemir M, Mercan S, et al. Obesity in adolescents and the risk factors. Turk J Phys Med Rehabil. 2017 Apr;64(1):37-45. doi: 10.5606/tftrd.2018.1402.
- 38. Castro JAC, Nunes HEG, Silva DAS. Prevalence of abdominal obesity in adolescents: association between sociodemographic factors and lifestyle. Rev Paul Pediatr. 2016 Sep;34(3):343-51. doi: 10.1016/j.rpped.2016.01.003.
- 39. Abiri B, Sarbakhsh P, Vafa M. Prevalence of overweight, obesity, and associated risk factors in healthy female adolescents in Tehran, Iran. Cent Asian J Glob Health. 2019 Dec;8(1):413. doi: 10.5195/cajgh.2019.413.

 Al-Hamad D, Raman V. Metabolic syndrome in children and adolescents. Transl Pediatr. 2017 Oct;6(4):397-407. doi: 10.21037/tp.2017.10.02.

- 41. Prakash N, Kishan Kumar Y, Belliappa P. A descriptive case-Control study of 100 patients of acanthosis nigricans and its utility to detect metabolic syndrome. Clin Dermatology Rev. 2020 Jan-Jun;4(1):17-22. doi: 10.4103/CDR. CDR 56 18.
- 42. Burke J, Hale D, Hazuda H, Stern M. A Quantitative Scale of Acanthosis Nigricans. Diabetes Care. 1999 Oct;22(10):1655-9. doi: 10.2337/diacare.22.10.1655.
- 43. Stuart CA, Gilkison CR, Smith MM, Bosma AM, Keenan BS, Nagamani M. Acanthosis nigricans as a risk factor for non-insulin dependent diabetes mellitus. Clin Pediatr (Phila). 1998 Feb;37(2):73-9. doi: 10.1177/000992289803700203.
- 44. Sudevan R, Vijay Kumar S, Sunny C, et al. Prevalence of acanthosis nigricans and its association with physical activity in adolescents - School-based analytical cross-sectional study from Kochi, Kerala. J Family Med Prim Care. 2021 Nov;10(11):4218-4222. doi: 10.4103/jfmpc.jfmpc 953 21.
- 45. Da Cunha Palhares HM, Zaidan P cunha, Dib F cristina M, et al. Association between acanthosis nigricans and other cardiometabolic risk factors in children and adolescents with overweight and obesity. Rev Paul Pediatr. 2018 Jul-Sep;36(3): 301-308. doi: 10.1590/1984-0462/;2018;36;3;00017.
- 46. Corina D, Monica M, Adela C, et al. The Role of Acanthosis Nigricans in Identifying Clinical and Metabolic Features of the Metabolic Syndrome in Obese Children. Acta Medica Marisiensis. 2011;57(5):457–9.
- 47. Radu AM, Carsote M, Dumitrascu MC, Sandru F. Acanthosis Nigricans: Pointer of Endocrine Entities. Diagnostics. 2022 Oct;12(10):2519. doi: 10.3390/diagnostics121 02519.
- 48. Ali O, Cerjak D, Kent JW, James R, Blangero J, Zhang Y. Obesity, Central Adiposity and Cardiometabolic Risk Factors in Children and Adolescents: a Family-based Study. Pediatr Obes. 2014 Jun;9(3):e58-e62. doi: 10.1111/j.2047-6310.2014.218.x.
- 49. Ashwell M, Gunn P, Gibson S. Waist-to-height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: Systematic review and meta-analysis. Obes Rev. 2012 Mar;13(3):275-86. doi: 10.1111/j.1467-789X.2011.00952.x.
- 50. Pereira PF, Serrano HMS, Carvalho GQ, et al. Waist and waist-to-height ratio: Useful to identify the metabolic risk of female adolescents? Rev Paul Pediatr. 2011;29(3):372–7.
- 51. Staiano AE, Gupta AK, Katzmarzyk PT. Cardiometabolic risk factors and fat distribution in children and adolescents. J Pediatr. 2014 Mar;164(3):560-5. doi: 10.1016/j.jpeds.2013.10.064.
- Després JP. Is visceral obesity the cause of the metabolic syndrome? Ann Med. 2006;38(1):52-63. doi: 10.1080/078538 90500383895. PMID:
- 53. Shah RV, Murthy VL, Abbasi SA, et al. Visceral adiposity and the risk of metabolic syndrome across body mass

index: the MESA Study. JACC Cardiovasc Imaging. 2014 Dec;7(12):1221-35. doi: 10.1016/j.jcmg.2014.07.017.

- 54. Bergman RN, Kim SP, Catalano KJ, et al. Why visceral fat is bad: mechanisms of the metabolic syndrome. Obesity (Silver Spring). 2006 Feb;14 Suppl 1:16S-19S. doi: 10.1038/oby.2006.277.
- 55. Vasan SK, Thomas N, Christopher S, Geethanjali FS, Paul TV, Sanjeevi CB. Anthropometric measurements for the prediction of the metabolic syndrome: A cross-sectional study on adolescents and young adults from Southern India. Heart Asia. 2011;3(1):2–7. doi:10.1136/ha.2009.001735.
- 56. Eslami M, Pourghazi F, Khazdouz M, et al. Optimal cut-off value of waist circumference-to-height ratio to predict central obesity in children and adolescents: A systematic review and meta-analysis of diagnostic studies. Front Nutr. 2023 Jan 4;9:985319. doi: 10.3389/fnut.2022.985319.
- 57. Song M, Kang S, Kang H. The Association Between Obesity Measures and Metabolic Syndrome Risk in Korean Adolescents Aged 10–18 Years. J Multidiscip Healthc. 2024 Apr;17:1769-1776. doi: 10.2147/JMDH.S461406.
- 58. Zong X, Kelishadi R, Hong YM, et al. Establishing international optimal cut-offs of waist-to-height ratio for predicting cardiometabolic risk in children and adolescents aged 6–18 years. BMC Med. 2023 Nov;21(1):442. doi: 10.1186/s12916-023-03169-y.
- 59. Lopez-Alvarenga JC, García-Hidalgo L, Landa-Anell MV, Santos-Gómez R, González-Barranco J, Comuzzie A. Influence of Skin Colour on the Diagnostic Utility of

- Clinical Acanthosis Nigricans to Predict Insulin Resistance in Obese Patients. Arch Med Res. 2006 Aug;37(6):744-8. doi: 10.1016/j.arcmed.2005.12.007.
- 60. Abdelhamed MH, Salah S, Alqudsi KK, et al. Indices of insulin resistance and adiposity can detect obesity-related morbidity in pediatrics. Saudi Med J. 2022 Feb;43(2): 161-168. doi: 10.15537/smj.2022.43.2.20210720.
- 61. McManus RM, Gottschalk R, Alanen K, Shum DT, Grundy P. Microscopic acanthosis nigricans in type 2 diabetes. J Cutan Med Surg. 2001 Sep-Oct;5(5):390-3. doi: 10.1007/s102270000028.
- 62. Uwaifo GI, Tjahjana M, Freedman RJ, Lutchman G, Promrat K. Acanthosis nigricans in patients with nonalcoholic steatohepatitis: An uncommon finding. Endocr Pract. 2006 Jul-Aug;12(4):371-9. doi: 10.4158/EP.12.4.371.

Correspondence:

Received: 16 December 2024 Accepted: 13 February 2025 Nur Aisiyah Widjaja, MD

Child health Department, Faculty of Medicine, Airlangga University-Soetomo General Academic Hospital, Surabaya, Indonesia. Jl. Mayjen Prof. Dr. Moestopo no. 6–8, Surabaya, 60286 Indonesia

E-mail: nuril08@yahoo.com ORCID: 0000-0002-4253-8760