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Abstract. Background and aim: Artificial Intelligence (AI) in healthcare is rapidly expanding and researchers 
are exploring its possible role in assisting physicians in early diagnosis, accurate prognosis prediction, and ef-
ficient treatment planning. This systematic review aims to summarize the evidence about the role of AI, Ma-
chine Learning (ML), and Deep Learning (DL) in the diagnostic imaging of chronic rhinosinusitis (CRS). 
Methods: The search strategy was performed according to PRISMA guidelines for systematic reviews. The 
authors searched all articles in three major medical databases (PubMed, Scopus, Cochrane Library) using the 
following key terms: “Artificial Intelligence” or “Machine Learning” or “Deep Learning” or “Neural Convolu-
tion Learning” or “Knowledge Engineering” and “Nose” or “Nasal” or “Septum” or “Turbinate” or “Sinus” or 
“Rhinology” or “Sinusitis” or “Rhinosinusitis” or “Chronic Rhinosinusitis” or “Chronic Sinusitis” or “CRS” 
and “CT” or “MRI” or “Computed Tomography” or “Images” or “CBCT” or “Magnetic Resonance Imag-
ing” or “Imaging” or “Radiographs” or “X-ray”. Results: Overall, 395 manuscripts were identified, and after 
duplicate removal (27 articles), excluding off-topic studies (298) and for other structural reasons (50) papers 
were assessed for eligibility; finally, only 20 papers were included and summarized in the review. Conclusions: 
Despite the growing interest in AI applications, due to the lack of standardized and unified validation proce-
dures and the heterogeneity of patient cohorts, its practical role in rhinology, particularly in radiological image 
processing in CRS, is not yet well defined, and further research is needed. It should be crucial for physicians to 
use their knowledge and skills to critically assess the information provided by AI and make any final treatment 
decisions. (www.actabiomedica.it)
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Introduction

Artificial intelligence (AI) is rapidly expanding in 
healthcare practices, and researchers are exploring its 

possible role in assisting physicians in early diagnosis, 
accurate prognosis prediction, and efficient treatment 
planning. First introduced in 1956, AI is a branch of 
computer science focused on developing algorithms 
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and models that allow machines to perform tasks that 
typically require human intelligence, such as recogniz-
ing patterns, solving problems, learning from experi-
ences, and making decisions (1, 2). There are several 
areas of AI and the most clinically relevant are ma-
chine learning (ML) and deep learning (DL). ML 
is a data-driven technique that enables algorithms to 
predict outcomes, make classifications, and recognize 
patterns by learning the inherent statistical patterns in 
a data set. ML algorithms mimic the human brain’s 
neural networks to receive and analyze data, learning 
from experience and gradually becoming capable of 
performing tasks for which they were not even pro-
grammed (3, 4). DL is a subfield of ML in which mul-
tiple layers of algorithms are linked and stratified to 
process raw data. Unlike traditional ML algorithms, 
which generally just extract features, DL processes the 
raw data to define the representations needed for clas-
sification (5). DL systems can process large datasets, 
enabling accurate and efficient results. They also have 
the potential to minimize prediction errors and intra- 
and inter-observer variability (6). The first applications 
of AI in healthcare date back to the 1970s, when a 
rule-based system was developed to distinguish various 
bacterial infections and recommend antibiotic treat-
ment options tailored to the patient’s body weight (7).  
Since then, advances in AI have made unimaginable 
advances in the medical and healthcare fields, empow-
ering the development of augmented reality to guide 
surgeons during procedures, the creation of robots 
for minimally invasive surgery, and the development 
of software that enables rapid and accurate diagnoses 
by analyzing patients’ clinical and radiological fea-
tures (8). Further evolution of AI and its ML and DL 
subsets are now being tested in clinical practice, and 
otolaryngology and rhinology are not immune from 
this evolution. In the literature, we are witnessing a 
great increase in studies on new AI applications in 
chronic rhinosinusitis (CRS) that analyze data from 
patients’ symptoms, endoscopic images, nasal cytol-
ogy, and radiological images. Although most of this 
research has focused on the symptoms and endotype 
of CRS (9-11), there is a growing interest in the role 
of AI in radiologic image processing (12). Recently, 
AI has demonstrated a functional capability in im-
age processing and analysis equal to or superior to 

humans, leading to its application for the automation 
of multiple clinical processes (1, 3, 13-15). However, 
despite a growing interest in this area and the impor-
tance for rhinologists to understand the potential and 
flows of these analytical tools, there are still no sys-
tematic reviews in the literature on the role of AI in 
CRS imaging. Therefore, this systematic review aims 
to summarize the evidence about the role of ML, DL, 
and AI in the diagnostic imaging of CRS.

Methods

The search strategy for this systematic review was 
performed in accordance with the Preferred Report-
ing Items for Systematic Reviews and Meta-analyses 
(PRISMA) guidelines for systematic reviews (16). The 
authors searched all articles in three major medical da-
tabases: PubMed (National Library of Medicine of the 
National Institutes of Health—NIH NLM), Scopus 
(Elsevier), and Cochrane Library (Wiley). All avail-
able articles on the topic from their inception until 
February 2024 were reviewed. In addition, the authors 
manually searched the main literature on otolaryngol-
ogy conferences and citation chaining to ensure that 
no relevant papers were left out. The authors’ search for 
articles was conducted in databases using a combina-
tion of the following key terms: “Artificial Intelligence” 
or “Machine Learning” or “Deep Learning” or “Neural 
Convolution Learning” or “Knowledge Engineering” 
and “Nose” or “Nasal” or “Septum” or “Turbinate” or 
“Sinus” or “Rhinology” or “Sinusitis” or “Rhinosinusi-
tis” or “Chronic Rhinosinusitis” or “Chronic Sinusitis” 
or “CRS” and “CT” or “MRI” or “Computed Tomogra-
phy” or “Images” or “CBCT” or “Magnetic Resonance 
Imaging” or “Imaging” or “Radiographs” or “X-ray”. 
The inclusion criteria for the research were represented 
by original articles specifically focusing on the role of 
ML, DL, and AI in the diagnostic imaging of CRS. 
Articles in non-English language, letters to the editor, 
book chapters, single case reports, meta-analyses, sys-
tematic and narrative reviews, conference papers, and 
off-topic papers were excluded. Specifically, we defined 
off-topic articles as those works concerning different 
items, such as the use of AI in the radiological diagno-
sis of nasal and sinus tumors, but also those works on 
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dental, oral, and maxillofacial surgery topics in which 
maxillary sinusitis is discussed in relation to issues not 
strictly related to otolaryngology, such as sinus lift and 
dental implantation. Two independent authors (AL 
and PD) conducted a selection of studies through a 
comprehensive screening of the titles and full abstracts 
retrieved from each manuscript to select eligible pa-
pers. After that, the detected articles were retrieved 
by further authors (RMM and EM) to perform full-
text analysis. If there was any uncertainty about their 
inclusion, the documents were further analyzed by an 
additional team composed of experienced specialists  
(FS and ST). Then, senior experts ( JZ and CC) were re-
sponsible for providing a final assessment and approval 
of the final revision version. The data extracted for each 
manuscript were authors, year of publication, national-
ity of the authors, type of paper (technical or clinical), 
dataset numerosity with the training:validation:testing 
split ratios, type of imaging assessed for each study, 
aim of each proposed AI model, learning method ap-
plied, type of AI models, algorithms and architectures 
employed, methods used for the interpretation and 
manipulation of the AI algorithm, and reliability for 
each AI model. Clinical studies were evaluated for 
both quality and methodological bias in accordance 
with the National Heart, Lung, and Blood Institute 
Study Quality Assessment Tools (NHISQAT) (17). 
The level of evidence for these prediction models that 
focus specifically on regression or ML methods was 
evaluated following the updated guidance of the state-
ment Transparent Reporting of a multivariable predic-
tion model for Individual Prognosis or Diagnosis + AI 
(TRIPOD+AI) (18).

Results

The search strategy was performed according to 
the PRISMA guidelines, as shown in Figure 1.

A total of 395 manuscripts were identified, and 
after removal of duplicates (27 articles) and exclusion 
of off-topic studies based on title and abstract (298),  
70 papers were assessed for eligibility; finally, after fur-
ther removal of articles for other structural reasons (50),  
only 20 papers were included and summarized in the 
present systematic review. The eligible records included 

and summarized in this systematic review have a pub-
lication range between 2019 and 2024. The most fre-
quent origin country was Korea (n = 8), with China 
being the second most productive nation (n = 6) and 
the United States the third (n = 3). The other papers 
included were written by researchers from Europe (n = 
1), Taiwan (n = 1) and Saudi Arabia (n = 1).

Regarding the articles’ type, nine had a technical 
structure, while the other eleven were clinical articles, 
specifically retrospective clinical studies, monocentric 
in seven cases, and multicentric in four cases. Clini-
cal articles were rated as good (n = 6 papers) or fair 
(n  =  5  papers) according to the NHI-SQAT tools, 
with no article being rated as low quality. Table 1 spe-
cifically reports the authors, year of publication, na-
tionality of the authors, type of paper, and risk of bias 
for all manuscripts included in the systematic review.

Many of the papers included in this review in-
vestigated the use of AI models in imaging to diag-
nose maxillary sinusitis (MS) (n = 6 articles). Other 
works specifically assess the endotype of Chronic 
Rhinosinusitis with Nasal Polyps (CRSwNP) (n = 2 
articles), while further manuscripts assessed the role 
of AI models to predict Eosinophilic Chronic Rhi-
nosinusitis (ECR) and/or distinguish it from non-
Eosinophilic Chronic Rhinosinusitis (NECRS) (n = 2 
articles). Interestingly, in one paper, some researchers 
used AI models in imaging to predict CRS recurrence. 
Moreover, two manuscripts explored the potentiality 
of AI to distinguish cases of Maxillary sinus Fungus 
Ball (MFB) from CRS and healthy controls (HCs). 
In another paper, the authors used AI for Primary 
Ciliary Dyskinesia (PCD) screening by analyzing the 
computed tomography (CT) features of patients with 
PCD who had exudative otitis media and sinusitis 
through a DL model. Finally, four articles analyzed 
the accuracy of AI in predicting sinusitis; in one ar-
ticle, the authors applied AI to define the status of 
the osteomeatal complex (OMC) (occluded or not 
occluded), and in one paper, AI was used to detect 
imaging artifacts. In five studies, an automated sinus 
segmentation model was applied to perform volumet-
ric quantification of paranasal sinuses and their opaci-
fication; the different models showed high reliability 
(Dice Similarity Coefficient: DSC 0.83-0.96) com-
pared with standard manual segmentation performed 
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(n=16), except for two papers that reported the ratio as 
a percentage (Musleh (32), Chowdhury et al. (38)) and 
one article (Lim et al. (29)) in which the authors stated 
that they used five-fold cross-validation (5FCV) with-
out reporting the numerosity of sets. Eight papers 
used external data to test or validate the performance 
of AI models, while two papers (Duan et al. (24) and 
Lim et al. (29)) conducted neither internal nor exter-
nal test. Regarding the learning method applied, most 
authors (n=17 papers) considered DL, while in three 
articles, the learning method reported was ML. Con-
cerning the AI models and architectures employed, the 
convolutional neural network (CNN) was the most 
frequently used (n=17 papers). In many papers (n=7 
articles), the authors used Gradient-weighted Class 

by the radiologist, also much more time-consuming. 
In most articles, the authors used CT as a diagnos-
tic tool for inflammatory nasal sinus diseases (n=14 
articles). A few studies, all from Korea, were based 
on radiography (x-ray) (n=6 articles). The data set 
consisted of the number of patients (p) or the num-
ber of images (i), depending on the article, and the 
data set numerosity order of magnitude ranged from  
101 to 104. Most authors (n=19 papers) performed 
training and validation of the proposed AI model, 
while in one case (Massey et al. (26)) the authors tested 
an AI model previously trained and validated by other 
authors (Humpries et al. (35)). Train:validation:test 
splits varied widely; the specific number of training, 
validation and test sets was available for most articles 

Figure 1. Search strategy.
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Table 1. Authors, year of publication, nationality, article type, and risk of bias of manuscripts.

Author Year Country Type of paper Center
NHISQAT
rating

Xiong et al. (19) 2024 China RCS Multiple G

Du et al. (20) 2024 China RCS Single F

Alekseeva et al. (21) 2023 Ukraine Technical - -

Kim K.S. et al. (22) 2023 Korea Technical - -

He et al. (23) 2023 China RCS Multiple G

Duan et al. (24) 2023 China RCS Single F

Zhou et al. (25) 2023 China RCS Single F

Massey et al. (26) 2022 USA RCS Single F

Hua et al. (27) 2022 China RCS Single G

Kong et al. (28) 2022 Korea Technical - -

Lim et al. (29) 2022 Korea Technical - -

Kuo et al. (30) 2022 Taiwan Technical - -

Kim K.S. et al. (31) 2022 Korea RCS Single F

Musleh (32) 2022 Saudi Arabia Technical - -

Jeon et al. (33) 2021 Korea RCS Multiple G

Oh et al. (34) 2021 Korea Technical - -

Humphries et al. (35) 2020 USA RCS Single G

Kim H.G. et al. (36) 2019 Korea Technical - -

Kim Y. et al. (37) 2019 Korea Technical - -

Chowdhury et al. (38) 2019 USA RCS Multiple G

Abbreviations: NHISQAT: National Heart, Lung, And Blood Institute Study Quality Assessment Tools; RCS: Retrospective Clinical Study;  
G: Good; F: Fair.

Activation Mapping (Grad-CAM) to interpret the AI 
model, while nomogram was used in two papers. The 
authors chose different metrics for AI model reliabil-
ity, with area under the curve (AUC) (0.63–0.98) and 
accuracy (ACC) (0.85–0.95) being the most frequently 
employed. A full report about the main features of the 
studies included in the present systematic review is 
available in Table 2.

Discussion

Recent advances in computer vision technology 
have enabled the rapid development of AI technology 
for image processing, automatic recognition, classifica-
tion, and segmentation. This has resulted in increas-
ingly efficient extraction of large amounts of image 

features from radiation images (13). Medical imaging 
evaluation is not limited to the qualitative diagnosis of 
diseases but also includes the acquisition and analysis 
of multiple quantitative information to provide data 
on disease severity, optimal treatment options, and 
patient prognostic outcomes. Thanks to continuous 
advancements in information technology and big data 
storage, AI is profoundly impacting various fields of 
the medical sciences. Considering otolaryngology and 
head and neck surgery, AI has been widely applied for 
disease diagnosis, pathology detection, and prognosis 
prediction (39). Specifically, most applications of AI 
in rhinology concern the diagnosis of nasal diseases, 
including nasal polyps (40), inverted papilloma (41), 
and other sinonasal tumors by combining AI with 
CT (42). Alternatively, AI has been applied in studies 
concerning magnetic resonance imaging (MRI) (43), 
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asthma and allergic rhinitis as comorbidities have been 
reported as risk factors for CRS relapse (50). 

In our systematic review, we identified 395 manu-
scripts, but only 20 papers were included. This highlights 
the still relatively limited number of articles published 
on this topic despite a growing interest in every field of 
AI. Among the selected studies, some works have also 
specifically investigated the predictors of disease with 
the corresponding nomogram. Xiong et al. developed 
predictive models for ECRS based on specific clinical 
parameters of the patient, including history evalua-
tion (age, sex, allergy, allergic rhinitis, asthma, smoking, 
surgical history), symptomatic evaluation including 
olfaction, presence and extent of nasal polyposis, nasal 
obstruction, purulent nasal discharge and visual ana-
logue scale (VAS) score, CT evaluation by LM score 
and ethmoidal/maxillary (E/M) sinus density ratio, and 
blood tests (ratio of eosinophils in peripheral blood, 
absolute eosinophils in peripheral blood). As shown in 
the nomogram, the authors concluded that the AI al-
gorithm identified the blood eosinophil ratio, the blood 
eosinophil count, and the E/M ratio as crucial predic-
tors of ECRS (19). He et al. proposed an AI model to 
predict CRS recurrence by developing a comprehensive 
nomogram combining a deep learning signature and 
clinical factors. In this clinic-radiomic nomogram, the 
predictors of CRS recurrence included allergic rhinitis, 
asthma, circulating eosinophils, and a Deep Learning 
Radiomic (DLR) score (23). Zhou et al. aimed to evalu-
ate the application of AI model to predict eCRSwNP 
based on clinical and radiological variables without the 
need for tissue biopsy. Specifically, the five most impor-
tant variables for the prediction of tissue eosinophilia 
in eCRSwNP patients were the following: Peripheral 
Eosinophil Percentage (PEP), total Immunoglobulin E 
(IgE), Peripheral Eosinophil Absolute Count (PEAC), 
E/M ratio and nasal Nitric Oxide (nNO) (25). Hum-
phries et al. aimed to use AI for fully automatic quanti-
tation of paranasal sinus opacification in the diagnostic 
workup of patients with CRS, including the following 
parameters as predictors of disease: LM score, Forced 
Expiratory Volume in 1 second (FEV1) % predicted, 
Forced Expiratory Volume in 1 second / Forced Vital 
Capacity (FEV1/FVC), Fractional concentration of 
exhaled Nitric Oxide (FeNO), IgE, and blood eosino-
phils count (35). Furthermore, this systematic review 

endoscopic images (44), or positron emission tomog-
raphy (PET)-CT (45). Some works have directly com-
pared AI with the clinical skills of medical specialists 
and demonstrated its equivalence or superiority; in 
particular, it was found that AI takes much less time 
to reach a conclusive diagnosis (42). However, even if 
AI studies often boast efficiency and superiority over 
human analytical accuracy and speed, AI application 
to real-life scenarios remains distant thus highlighting 
the need for an analytical assessment of the technical 
content of articles. Our review has revealed that rhi-
nology is not free from this significant challenge, and 
there is an increasing and growing interest in exploring 
the potential of various AI, ML and DL applications 
in daily clinical practice. Interestingly, a generic search 
on MedLine performed about the role of AI in medical 
diagnostics without specifying any medical specialty 
or disease (“artificial intelligence” AND (“diagnosis” 
OR “ prediction”)) revealed a total of 21133 articles in 
English over the past five years, indicative of an aver-
age of more than 11 publications per day. In particular, 
our review aims to summarize the evidence about the 
role of ML, DL, and AI in diagnostic imaging of CRS. 
CRS is a chronic inflammatory disorder that affects 
the nasal mucosa and has an overall prevalence in the 
general population in Europe of 10.9% (range 6.9%-
27.1%), while in China it is 8%. This chronic disease 
is characterized by severe impairment of quality of life 
and a propensity to relapse that often requires multiple 
revision surgeries (46). According to the European Po-
sition Paper on Rhinosinusitis and Nasal Polyps 2020 
(EPOS2020), CRS represents one of the ten most ex-
pensive health conditions for United States employers. 
Particularly, higher costs and worse quality of life are 
associated with patients with recurrent CRS after sur-
gery (47). Identifying valid methods to accurately de-
fine CRS patients who fail adequate therapy and have 
a high risk of recurrence is critical in order to develop 
treatment recommendations to reduce the rate of re-
lapse. In this regard, advanced knowledge of the risk of 
CRS recurrence has been gained in recent years. Lou 
et al. found that high numbers of tissue eosinophils 
play an essential role in polyp recurrence (48). Meng 
et al. suggested that the ratio of Lund-Mackay (LM) 
scores for the ethmoidal and maxillary sinus indicates 
CRSwNP recurrence (49). In addition, the presence of 
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